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Probability
• Probability: A function quantifying the occurrence likelihood of an event

– Event: a subset of the sample space (Ω) which is the set of all the possible outcomes
• Conditional probability of B given A (with Pr(A) > 0): the occurrence probability of B, given that A

has already occurred
– (Bayes’ theorem) Pr(Ai | B) = Pr(Ai) Pr(B | Ai)/

∑N
n=1 Pr(An) Pr(B | An) if {An}N

n=1 are
mutually exclusive and Ω =

⋃N
n=1 An

• Independence between events B and A (i.e., B ⊥ A): Pr(B ∩ A) = Pr(A) Pr(B), or equiv. Pr(B | A) =
Pr(B)

Random variable (RV)
• RV: encoding the entries of the sample space (i.e., all the possible outcomes)

• Knowing the distribution of an RV ⇔ knowing one of the following functions

– Cumulative distribution function (cdf): Pr(X ≤ x)
∗ “X ≤ x” short for the event {ω ∈ Ω : X(ω) ≤ x}

– Probability mass function (pmf, specifically for discrete RVs: Pr(X = x)
∗ “X = x” short for the event {ω ∈ Ω : X(ω) = x}

– Probability density function (pdf, specifically for continuous RVs): derivative of the cdf with
respect to x

– Moment generating function (mgf, not always existing)

• Support: supp(X) = {x ∈ R : pX(x) or fX(x) > 0}

• Expectation

E{g(X)} =
{∫

x∈supp(X) g(x)fX(x)dx for continuous X∑
x∈supp(X) g(x)pX(x) for discrete X

– Examples
∗ Taking g(X) = X

E(X) =
{∫

x∈supp(X) xfX(x)dx for continuous X∑
x∈supp(X) xpX(x) for discrete X

· E(aX + b) = aE(X) + b for constants a and b
∗ Taking g(X) = exp(tX), E{g(X)} is the mgf if it is finite at least for t in a neighborhood of 0
∗ Taking g(X) = Xk with positive integer k:

E(Xk) =
{∫

x∈supp(X) xkfX(x)dx for continuous X∑
x∈supp(X) xkpX(x) for discrete X
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· E(Xk) = M (k)(0) if the mgf M(t) is well-defined
∗ Taking g(X) = {X − E(X)}2:

var(X) = E[{X − E(X)}2] =
{∫

x∈supp(X){x − E(X)}2fX(x)dx for continuous X∑
x∈supp(X){x − E(X)}2pX(x) for discrete X

· var(X) = E(X2) − {E(X)}2

· var(aX + b) = a2var(X)
· sd(X) =

√
var(X): the standard deviation of X

∗ Taking g(X) = 1A(X):
E{1A(X)} = Pr(X ∈ A)

Univariate transformation: finding the distribution of Y = g(X), given the
distribution of X

• Figure out supp(Y ) = {y : y = g(x), x ∈ supp(X)}

• For discrete Y with discrete X: pY (y) = Pr(Y = y) = Pr(g(X) = y)

• For continuous Y

– FY (y) = Pr{g(X) ≤ y}
– fY (y) = d

dy FY (y) = d
dy

∫
{x:g(x)≤y} fX(x)dx

∗ Integration region {x : g(x) ≤ y} may be expressed in terms of a series of intervals with
endpoints as functions of y, say [a(y), b(y)], [c(y), d(y)], etc.

∗ The integration of fX is often avoidable by employing the Leibniz Rule (CB Thm. 2.4.1):

d
dy

∫ b(y)

a(y)
f(x)dx = f{b(y)} d

dy
{b(y)} − f{a(y)} d

dy
{a(y)}

with a(y) and b(y) both differentiable with respect to y.

• If X ∼ N (µ, σ2), then Y = aX +b, a ̸= 0, is also normally distributed. Specifically, Y ∼ N (aµ+b, a2σ2).

Normal sampling theory
• RVs X1, . . . , Xn: a random sample of size n

– Independent and identically distributed (iid) sample: X1, . . . , Xn are iid
– iid normal sample: X1, . . . , Xn

iid∼ N (µ, σ2)
• Statistic: any function of a random sample, e.g.,

– Sample mean: X̄ = n−1 ∑n
i=1 Xi

– Sample variance: S2 = (n − 1)−1 ∑n
i=1(Xi − X̄)2

– Sample standard deviation: S =
√

(n − 1)−1 ∑n
i=1(Xi − X̄)2

• Identities for an iid normal sample
–

∑n
i=1 X2

i ∼ χ2(n) if X1, . . . , Xn
iid∼ N (0, 1)

∗ Q ∼ χ2(n) ⇒ E(Q) = n and var(Q) = 2n
– Z/

√
Q/n ∼ t(n) if Z ∼ N (0, 1) and Q ∼ χ2(n) are independent of each other

– (P/m)/(Q/n) ∼ F (m, n) if P ∼ χ2(m) and Q ∼ χ2(n) are independent of each other
– n1/2(X̄ − µ)/σ ∼ N (0, 1)
– (n − 1)S2/σ2 ∼ χ2(n − 1)
– X̄ ⊥ S2

– n1/2(X̄ − µ)/S ∼ t(n − 1)
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Parametric model
• The true model assumed to be an element of a set of pdfs/pmfs {f(· | θ) : θ ∈ Θ}

– Finding the true model reducing to locating the true parameter θ0 ∈ Θ
– θ0 unknown but believed to be fixed (frequentist statistics)

Point estimation
• Method of moments (MM) (for iid sample)

1. Equate the kth-order RAW moments (E(Xk
1 )) to its empirical counterpart (n−1 ∑n

i=1 Xk
i ).

– Better to work with a small k
2. Solve the resulting equation(s) for θ.

• Maximum likelihood (ML)
– L(θ) is the joint pdf/pmf of the sample (consisting of n RVs) with emphasis on θ ∈ Θ

∗ For an independent sample L(θ) =
∏n

i=1 fXi
(Xi | θ), θ ∈ Θ

– θ̂ML is the maximizer of L(θ) (or ℓ(θ) = ln L(θ)) within Θ
∗ For discrete Θ: compare L(θ) (or ℓ(θ)) over all the possible values of θ
∗ For continuous Θ:

· If ℓ′(θ) = 0 has no solution: utilize the monotonicity of L(θ) (or ℓ(θ))
· If ℓ′(θ) = 0 has at least one solution: get the solution(s) (i.e., stationary point(s)) and

then compare L(θ) (or ℓ(θ)) over all the stationary points and boundary points of Θ
– Invariance property: ĝ(θ)ML = g(θ̂ML)

Evaluating estimators
• MSE(θ̂) = Bias2(θ̂) + var(θ̂)

• Cramér-Rao lower bound (CRLB) for the variance of any unbiased estimator of g(θ): if E(Tn) = g(θ),
then var(Tn) ≥ {g′(θ)}2/In(θ)

– Fisher information In(θ) = var{ℓ′(θ)} = E[{ℓ′(θ)}2] = −E{ℓ′′(θ)}
– If g(θ) = θ, then CRLB becomes I−1

n (θ).

• If E(Tn) = g(θ), then Efficency(Tn) = CRLB/var(Tn).

– The higher efficiency the better (typically up to 1);
– Tn is an efficient estimator for g(θ) ⇐⇒ E(Tn) = g(θ) and its efficiency = 1.
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