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Probability

e Probability: A function quantifying the occurrence likelihood of an event
— Event: a subset of the sample space (2) which is the set of all the possible outcomes
o Conditional probability of B given A (with Pr(A) > 0): the occurrence probability of B, given that A
has already occurred
— (Bayes’ theorem) Pr(4; | B) = Pr(A;)Pr(B | A;)/ 25:1 Pr(A,)Pr(B | A,) if {A,}0_, are
mutually exclusive and 2 = ngl A
» Independence between events B and A (i.e., B L A): Pr(BN A) = Pr(A) Pr(B), or equiv. Pr(B | A) =
Pr(B)

Random variable (RV)

o RV: encoding the entries of the sample space (i.e., all the possible outcomes)

e Knowing the distribution of an RV < knowing one of the following functions

Cumulative distribution function (cdf): Pr(X < z)
* “X < 27 short for the event {w € 2: X(w) <z}

Probability mass function (pmf, specifically for discrete RVs: Pr(X = z)
* “X = 27 short for the event {w € Q: X (w) =z}

— Probability density function (pdf, specifically for continuous RVs): derivative of the cdf with
respect to x

— Moment generating function (mgf, not always existing)

« Support: supp(X) = {z € R: px(x) or fx(z) >0}
o Expectation
E{g(X)} = {fzesupp(X) 9(x) fx(z)dz  for .COntinuous X
2 zesupp(x) 9(@)px (z)  for discrete X

— Examples
x Taking g(X) = X

E(X) = frésupp(X) xfx(x)dx for continuous X
N > zesupp(x) Px (z)  for discrete X

- E(aX +b) = aE(X) + b for constants a and b
x Taking g(X) = exp(tX), E{g(X)} is the mgf if it is finite at least for ¢ in a neighborhood of 0
% Taking ¢g(X) = X* with positive integer k:

B(X*) = fxgsupp(x) ¥ fx(z)dr  for continuous X
- > zesupp(X) 2Fpx(z) for discrete X
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- B(X*) = M®)(0) if the mgf M(t) is well-defined
* Taking g(X) = {X — E(X)}*

var(X) = E[{X — E(X)}?] = {ff:esupp(X){a{j - EéX)}Qéx(x)dx for .c‘ontinuous X
zesupp(X) X — (X)}px(x) for discrete X

() = E(X) — {BCO)?
. var(aX +b) = ar(X)
X)= \/V&I‘ : the standard deviation of X
* Taklng g(X) = (X):
E{14(X)} =Pr(X € A4)

Univariate transformation: finding the distribution of Y = g(X), given the
distribution of X

 Figure out supp(Y) = {y : y = g(x),x € supp(X)}
o For discrete Y with discrete X: py (y) = Pr(Y =y) = Pr(g9(X) = y)

¢ For continuous Y

- Fy(y) = Pr{g(X) <y}
— W) = G ) = & gy fx(@de
* Integration region {z : g(x) < y} may be expressed in terms of a series of intervals with
endpoints as functions of y, say [a(y),b(y)], [c(y),d(y)], etc.
* The integration of fx is often avoidable by employing the Leibniz Rule (CB Thm. 2.4.1):

d b(y)

[ rwas - f{b(y)}f—y{b@)} - f{a(y)}d%{a(y)}

a(y)
with a(y) and b(y) both differentiable with respect to y.
o If X ~ N(u,0?),then Y = aX+b, a # 0, is also normally distributed. Specifically, Y ~ N (au+b, a®c?).

Normal sampling theory

e RVs Xi,...,X,: arandom sample of size n
— Independent and identically distributed (iid) sample: X1, ..., X,, are iid
— iid normal sample: X1,..., X, - N(,0?%)
e Statistic: any function of a random sample, e.g.,
— Sample mean: X =n" 13" X,
— Sample variance: S? = (n —1)"1 Y7 (X; — X)?
— Sample standard deviation: S = \/(n —1)IY (X - X)?
e Identities for an iid normal sample
— X2 2 (n) i X, X P N(0,1)
* Q ~ x%(n) = E(Q) = n and var(Q) = 2n
— Z/\/Q/n ~t(n)if Z ~N(0,1) and Q ~ x*(n) are independent of each other
— (P/m)/(Q/n) ~ F(m,n) if P ~ x%*(m) and Q ~ x%(n) are independent of each other
= (X —p)fo ~ N(0,1)
- (n=1)8%/0% ~x*(n—1)
- X146
- n'2(X —p)/S ~t(n—1)




Parametric model

o The true model assumed to be an element of a set of pdfs/pmfs {f(- | 0): 0 € O}
— Finding the true model reducing to locating the true parameter 6y € ©
— 6p unknown but believed to be fixed (frequentist statistics)

Point estimation

o Method of moments (MM) (for iid sample)
1. Equate the kth-order RAW moments (E(XF)) to its empirical counterpart (n=1 Y"1 | XF).
— Better to work with a small k&
2. Solve the resulting equation(s) for 6.
o Maximum likelihood (ML)
— L(0) is the joint pdf/pmf of the sample (consisting of n RVs) with emphasis on 6 € ©
* For an independent sample L(0) =[], fx,(X; | 0), 0 € ©
— Oy, is the maximizer of L() (or £(6) = In L(6)) within ©
* For discrete ©: compare L(6) (or £(6)) over all the possible values of 6
* For continuous ©:
- If ¢(9) = 0 has no solution: utilize the monotonicity of L(6) (or £(6))
- If £(f) = 0 has at least one solution: get the solution(s) (i.e., stationary point(s)) and
then compare L(#) (or £(6)) over all the stationary points and boundary points of ©

— Invariance property: g/(\H)ML = g(Auw)
Evaluating estimators
« MSE(f) = Bias*(0) + var(f)

e Cramér-Rao lower bound (CRLB) for the variance of any unbiased estimator of g(6): if E(T},) = g(6),
then var(T,,) > {g'(0)}?/1,(0)

— Fisher information I,,(0) = var{¢'(0)} = E[{¢'(0)}?] = —E{¢"(0)}
— If g(#) = 0, then CRLB becomes I, 1(6).

o If E(T},) = g(8), then Efficency(T;,) = CRLB/var(T,,).

— The higher efficiency the better (typically up to 1);
— T, is an efficient estimator for g(0) <= E(T,) = g(0) and its efficiency = 1.
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