PH 712 Probability and Statistical Inference Part I: Random Variable

Zhiyang Zhou [\(zhou67@uwm.edu,](mailto:zhou67@uwm.edu) [zhiyanggeezhou.github.io\)](https://zhiyanggeezhou.github.io/)

2024/11/06 21:34:34

Probability (HMC Sec. 1.1–1.3)

- Sample space (denoted by Ω): the set of all the possible outcomes, e.g.,
	- $-\Omega = \mathbb{R}^+$ if investigating survival times of cancer patients
	- $-\Omega = \{yes, no\}$ if investigating whether a treatment is effective
- Event (denoted by capital Roman letters, e.g., *A*): a subset of the sample space, e.g., corresponding to the previous sample spaces,
	- $-$ (0, 10]: the survival time ≤ 10
	- **–** {yes}: the treatment is effective
- Occurrence of event: the outcome is part of the event
- Probability (denoted by Pr): a function quantifying the occurrence likelihood of an event
	- **–** E.g.,
		- ∗ Pr(*A*): the occurrence probability of event *A*
		- ∗ Pr(*A^c*): the probability that event *A* does NOT occur (*A^c* = Ω \ *A* denoting the complement set of *A*)
		- ∗ Pr(*A* ∪ *B*): the occurrence probability of either *A* or *B*
		- ∗ Pr(*A* ∩ *B*): the occurrence probability of both *A* and *B*
	- **–** Input: an event
	- **–** Output: a real number (the occurrence probability of the input event)
	- **–** Requirements:
		- ∗ Pr(*A*) ≥ 0 for any event *A*
		- \ast Pr(Ω) = 1 (i.e., the sample space as a special event always occurs)
		- ∗ (The probability of the union of mutually exclusive countably events is the sum of the probability of each event) If $\{A_n\}_{n=1}^{\infty}$ is a sequence of events with $A_{n_1} \cap A_{n_2} = \emptyset$ for all $n_1 \neq n_2$, then $Pr(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} Pr(A_n)$
	- **–** More properties (deduced from the above requirements):
		- ∗ Pr(*A*) = 1 − Pr(*A^c*)
		- $\ast \Pr(\emptyset) = 0$
		- ∗ Pr(*A*) ≤ Pr(*B*) if *A* ⊂ *B*
		- ∗ 0 ≤ Pr(*A*) ≤ 1 for each *A*
		- $*\lim_{n\to\infty} \Pr(A_n) = \Pr(\lim_{n\to\infty} A_n) = \Pr(\bigcup_{n=1}^{\infty} A_n)$ if $\{A_n\}_{n=1}^{\infty}$ is nondecreasing (i.e., $A_1 \subset$ $A_2 \subset \cdots$
		- $*\lim_{n\to\infty} \Pr(A_n) = \Pr(\lim_{n\to\infty} A_n) = \Pr(\bigcap_{n=1}^{\infty} A_n)$ if $\{A_n\}_{n=1}^{\infty}$ is nonincreasing (i.e., $A_1 \supset$ $A_2 \supset \cdots$
		- ∗ $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$ for any events *A* and *B* regardless if they are disjoint or not

∗ Pr($\bigcup_{n=1}^{\infty} A_n$) ≤ $\sum_{n=1}^{\infty}$ Pr(A_n) for arbitrary sequence $\{A_n\}_{n=1}^{\infty}$

Conditional probability and independence (HMC Sec. 1.4)

- Conditional probability of *B* given *A* (with $Pr(A) > 0$): $Pr(B | A) = Pr(A \cap B)/Pr(A)$
	- **–** Interpretation: the occurrence probability of *B*, given that *A* has already occurred.
		- **–** Properties:
			- ∗ Pr(*B* | *A*) ≥ 0
			- ∗ Pr(*A* | *A*) = 1
			- ∗ Pr($\bigcup_{n=1}^{\infty} B_n | A$) = $\sum_{n=1}^{\infty}$ Pr($B_n | A$) if $\{B_n\}_{n=1}^{\infty}$ are mutually exclusive
			- * (Law of total probability) $Pr(B) = \sum_{n=1}^{N} Pr(A_n) Pr(B \mid A_n)$ if $\{A_n\}_{n=1}^{N}$ form a partition of Ω (i.e., ${A_n}_{n=1}^N$ are mutually exclusive and $\Omega = \bigcup_{n=1}^N A_n$)
			- * (Bayes' theorem) $Pr(A_i | B) = Pr(A_i) Pr(B | A_i) / \sum_{n=1}^{N} Pr(A_n) Pr(B | A_n)$ if $\{A_n\}_{n=1}^{N}$ form a decomposition/partition of Ω
- Independence between two events *B* and *A* (i.e., $B \perp A$): $Pr(B \cap A) = Pr(A) Pr(B)$

$$
- \Leftrightarrow B \perp A^c
$$

- $-\Leftrightarrow \Pr(B \mid A) = \Pr(B)$ (if $\Pr(A) \neq 0$)
- Mutual independence among *N* events A_1, \ldots, A_N : for arbitrary subset of $\{A_1, \ldots, A_N\}$, say ${A_{n_1}, \ldots, A_{n_K}}$ with $2 \le K \le N$, $Pr(\bigcap_{k=1}^K A_{n_k}) = \prod_{k=1}^K Pr(A_{n_k})$

HMC Ex. 1.4.31

- A French writer, Chevalier de Méré, had asked a famous mathematician, Pascal, to explain why the following two probabilities were different (the difference had been noted from playing the game many times): (1) at least one six in four independent casts of a six-sided die; (2) at least a pair of sixes in 24 independent casts of a pair of dice. From proportions it seemed to Mr. de Méré that the two probabilities should be the same. Compute the probabilities of (1) and (2).
	- Hint: Pr(no six in one cast of a die) = $5/6$, Pr(no six in one cast of a pair of dice) = $(5/6)^2$, and Pr(only one six in one cast of a pair of dice) = $2 \times (1/6) \times (5/6)$.

Distribution of an RV (HMC Chp. 1.5–1.7)

- RV: a function encoding the entries of Ω
	- **–** Input: arbitrary entry of Ω, say *ω*
	- **–** Output: *X*(*ω*) ∈ R
- The cumulative distribution function (cdf) of RV X , say F_X , is defined as

$$
F_X(t) = \Pr(X \le t), \quad t \in \mathbb{R}.
$$

- $\{X \leq t\}$: short for the event $\{\omega \in \Omega : X(\omega) \leq t\}$
- **–** *F^X* satisfies following three properties:
	- ∗ (Right continuous) lim*x*→*t*⁺ *FX*(*x*) = *FX*(*t*) (p.s., lim*x*→*t*[−] *FX*(*x*) = Pr(*X < t*));
	- ∗ (Non-decreasing) *FX*(*t*1) ≤ *FX*(*t*2) for *t*¹ ≤ *t*2;
	- ∗ (Ranging from 0 to 1) *FX*(−∞) = 0 and *FX*(∞) = 1.
- **–** Reversely, a function satisfying the three above properties must be a cdf for certain RV.
	- ∗ Indicating an one-to-one correspondence between the set of all the RVs and the set of all the cdfs
- **–** Knowing the cdf of an RV ⇔ knowing its distribution

Example Lec1.1

• Given $p \in (0,1)$, suppose

$$
F_X(x) = \begin{cases} 1 - (1 - p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}
$$

where $|x|$ represents the integer part of real x.

- **–** Show that *F^X* is a cdf. (Hint: Check all the three properties of cdf, especially the right-continuity of *F^X* at positive integers.)
- Given $\lambda > 0$, suppose

$$
F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}
$$

– Show that *F^X* is a cdf.

Distribution of an RV (con'd)

- Discrete RV
	- **–** RV *X* merely takes countably different values
	- **–** Probability mass function (pmf): *pX*(*t*) = Pr(*X* = *t*)
		- ∗ $F_X(t) = \sum_{x \le t} p_X(x)$
		- ∗ *pX*(*t*) = *FX*(*t*) − Pr(*X < t*) = *FX*(*t*) − lim*x*→*t*[−] *FX*(*x*)
	- **–** Knowing the pmf of a discrete RV ⇔ knowing its distribution
	- **–** Examples:
		- ∗ Bernoulli: a discrete RV with two possible outcomes, typically coded as 0 (failure) and 1 (success).
			- · https://en.wikipedia.org/wiki/Bernoulli_distribution
		- ∗ Binomial (denoted by *B*(*n, p*)): the number of successes in *n* independent Bernoulli trials.
			- · https://en.wikipedia.org/wiki/Binomial_distribution
			- · E.g., flipping a coin 10 times and counting the number of heads.
		- ∗ Geometric: the number of trials until the first success in a series of independent Bernoulli trials.
			- · https://en.wikipedia.org/wiki/Geometric_distribution
			- E.g., the number of coin flips needed until the first head appears.
		- ∗ Poisson: the number of events that occur in a fixed interval of time or space, where events happen independently.
			- · https://en.wikipedia.org/wiki/Poisson_distribution
			- · E.g., the number of emails you receive in an hour.
		- ∗ Uniform (the discrete version): each outcome in a finite set has an equal probability.
			- · https://en.wikipedia.org/wiki/Discrete_uniform_distribution
			- · E.g., rolling a fair dice, where each of the six faces has an equal chance of landing.
- Continuous RV
	- **–** RV *X* is continuous ⇔ its cdf *F^X* is absolutely continuous, i.e., there exists *f^X* such that

$$
F_X(t) = \int_{-\infty}^t f_X(x) \mathrm{d}x, \quad \forall t \in \mathbb{R}.
$$

- ∗ Probability density function (pdf): *fX*(*t*) = d*FX*(*t*)*/*d*t* (nonnegative for all *t*).
- \cdot $\int_{-\infty}^{\infty} f_X(x) dx = \lim_{t \to \infty} \int_{-\infty}^t f_X(x) dx = \lim_{t \to \infty} F_X(t) = 1$ ∗ Pr(*X* = *x*0) = 0 for all *x*⁰ ∈ R
-

Because
$$
Pr(X = x_0) = Pr(X \le x_0) - Pr(X < x_0) = F_X(x_0) - \lim_{x \to x_0^-} F_X(x) = 0
$$

- **–** Knowing the pdf of a continuous RV ⇔ knowing its distribution
- **–** Examples:
	- ∗ Uniform (the continuous version): all outcomes in a continuous range are equally likely. · [https://en.wikipedia.org/wiki/Uniform_distribution_\(continuous\)](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous))
	- $∗$ Normal/Gaussian (denoted by $\mathcal{N}(\mu, \sigma^2)$): the most important and widely used distributions, where data is symmetrically distributed around the mean.
		- · https://en.wikipedia.org/wiki/Normal_distribution
	- ∗ Exponential: often used to describe waiting times.
		- · https://en.wikipedia.org/wiki/Exponential_distribution

Example Lec1.2

• Given $\lambda > 0$, suppose

$$
F_X(x) = \begin{cases} 1 - \exp(-x/\lambda), & x > 0, \\ 0, & \text{otherwise,} \end{cases}
$$

– What is the type of *X*, discrete or continuous?

• Given $p \in (0,1)$, suppose

$$
F_X(x) = \begin{cases} 1 - (1 - p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}
$$

where $|x|$ represents the integer part of x .

– What is the type of *X*, discrete or continuous?

Support of RV (CB pp. 50 & HMC pp. 46)

- For discrete RV *X* with pmf *p^X*
	- **–** supp(*X*) = {*x* ∈ R : *pX*(*x*) *>* 0}
		- **–** E.g., support of *B*(*n, p*) is {0*, . . . , n*}
	- $-\sum_{x \in \text{supp}(X)} p_X(x) = 1$
- For continuous RV *X* with pdf *f^X*
	- $-$ supp $(X) = \{x \in \mathbb{R} : f_X(x) > 0\}$
	- $-$ E.g., support of $\mathcal{N}(0,1)$ is $\mathbb R$
	- $-\int_{\text{supp}(X)} f_X(x) dx = 1$

Example Lec1.3

• Revisit F_X defined in Example Lec1.1, i.e.,

$$
F_X(x) = \begin{cases} 1 - (1 - p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}
$$

where $|x|$ represents the integer part of real x . **–** What is the support of *X*?

Indicator function

Given a set *A*, the indicator function of *A* is

$$
\mathbf{1}_A(x) = \begin{cases} 1, & x \in A, \\ 0, & \text{otherwise.} \end{cases}
$$

Example Lec1.4

• Revisit F_X defined in Example Lec1.1, i.e.,

$$
F_X(x) = \begin{cases} 1 - (1 - p)^{\lfloor x \rfloor}, & x \ge 1, \\ 0, & \text{otherwise,} \end{cases}
$$

where $|x|$ represents the integer part of x .

– Please reformulate *F^X* with the indicator function of *A* = {*x* : *x* ≥ 1}.

Indicating the support when writing pmf and pdf

- Bernoulli: https://en.wikipedia.org/wiki/Bernoulli distribution
- Binomial (denoted by $B(n, p)$): https://en.wikipedia.org/wiki/Binomial_distribution

$$
- p_X(k) = {n \choose k} p^k (1-p)^{n-k} \cdot \mathbf{1}_{\{0,1,...,n\}}(k)
$$

 * OR ${n \choose k} p^k (1-p)^{n-k}, k \in \{0,1,...,n\}$

• Geometric: https://en.wikipedia.org/wiki/Geometric_distribution

$$
- p_X(k) = (1-p)^{k-1} p \cdot \mathbf{1}_{\mathbb{Z}^+}(k) \n\ast \text{ OR } (1-p)^{k-1} p, k \in \mathbb{Z}^+
$$

• Poisson: https://en.wikipedia.org/wiki/Poisson_distribution

$$
- p_X(k) = \lambda^k \exp(-\lambda)/k! \cdot \mathbf{1}_{\{0,1,2,\dots\}}(k)
$$

 * OR $\lambda^k \exp(-\lambda)/k!$, $k \in \{0,1,2,\dots\}$

• Uniform (the discrete version; denoted by $U([a, b])$ with integers $a < b$): [https://en.wikipedia.org/wiki/](https://en.wikipedia.org/wiki/Discrete_uniform_distribution) [Discrete_uniform_distribution](https://en.wikipedia.org/wiki/Discrete_uniform_distribution)

$$
- p_X(k) = 1/(b - a + 1) \cdot \mathbf{1}_{\{a, a+1, \dots, b-1, b\}}(k)
$$

\n* OR $1/(b - a + 1)$, $k \in \{a, a+1, \dots, b-1, b\}$

- Uniform (the continuous version): [https://en.wikipedia.org/wiki/Uniform_distribution_\(continuous\)](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous))
- Normal/Gaussian (denoted by $\mathcal{N}(\mu, \sigma^2)$): https://en.wikipedia.org/wiki/Normal_distribution
- Exponential: https://en.wikipedia.org/wiki/Exponential_distribution

$$
- f_X(x) = \lambda \exp(-\lambda x) \cdot \mathbf{1}_{[0,\infty)}(x)
$$

* OR $\lambda \exp(-\lambda x)$, $x \ge 0$

Expectations (HMC Sec. 1.8–1.9)

• Given RV *X* and function *g*, the expectation of $g(X)$ is

$$
E{g(X)} = \begin{cases} \int_{x \in \text{supp}(X)} g(x) f_X(x) dx & \text{for continuous } X\\ \sum_{x \in \text{supp}(X)} g(x) p_X(x) & \text{for discrete } X \end{cases}
$$

- Weighted average of values of
$$
g(X)
$$

- $-$ E{ $a_1g_1(X) + a_2g_2(X)$ } = $a_1E{g_1(X)} + a_2E{g_2(X)}$ for constants a_1 and a_2 • Examples
	- $-$ Taking $q(X) = X$

$$
E(X) = \begin{cases} \int_{x \in \text{supp}(X)} x f_X(x) dx & \text{for continuous } X\\ \sum_{x \in \text{supp}(X)} x p_X(x) & \text{for discrete } X \end{cases}
$$

- ∗ The mean of *X* (a.k.a. the 1st raw moment/moment about 0 of *X*)
- \ast E($aX + b$) = $aE(X) + b$ for constants *a* and *b*
- $-$ Taking $g(X) = X^k$ with positive integer *k*:

$$
E(X^{k}) = \begin{cases} \int_{x \in \text{supp}(X)} x^{k} f_{X}(x) dx & \text{for continuous } X\\ \sum_{x \in \text{supp}(X)} x^{k} p_{X}(x) & \text{for discrete } X \end{cases}
$$

∗ The *k*th raw moment/moment about 0 of *X* **–** Taking *g*(*X*) = {*X* − E(*X*)} 2 :

$$
\text{Var}(X) = \mathbb{E}[\{X - \mathbb{E}(X)\}^2] = \begin{cases} \int_{x \in \text{supp}(X)} \{x - \mathbb{E}(X)\}^2 f_X(x) \, dx & \text{for continuous } X\\ \sum_{x \in \text{supp}(X)} \{x - \mathbb{E}(X)\}^2 p_X(x) & \text{for discrete } X \end{cases}
$$

- ∗ Variance of *X* (a.k.a. the 2nd central moment of *X*)
- ∗ Measuring how spread out the data are if they are independently generated following *F^X* ∗ Var(*X*) = E(*X*²) − {E(*X*)} 2

*
$$
Var(aX + b) = a^2Var(X)
$$

\n* $sd(X) = \sqrt{Var(X)}$: the standard deviation of *X*
\n– Taking $g(X) = \mathbf{1}_A(X)$:
\n
$$
E\{\mathbf{1}_A(X)\} = \Pr(X \in A)
$$

Example Lec1.5

• Find the mean and variance of
$$
X \sim \mathcal{N}(0, 1)
$$
, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

$$
E(X) = \int_{\mathbb{R}} x f_X(x) dx \xrightarrow{x \exp(-x^2/2) \text{ is odd}} \int_{\mathbb{R}} \frac{x}{\sqrt{2\pi}} \exp(-x^2/2) dx = 0
$$

$$
Var(X) \xrightarrow{\text{even } x^2} \frac{\exp(-x^2/2)}{\pi} 2 \int_0^\infty \frac{x^2 \exp(-x^2/2)}{\sqrt{2\pi}} dx \xrightarrow{u = x^2/2} 2 \int_0^\infty \frac{2u \exp(-u)}{\sqrt{2\pi}} d\sqrt{2u} = \frac{2\Gamma(3/2)}{\sqrt{\pi}} = 1
$$

- Find the mean and variance of *X* ~ $\mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, i.e., $f_X(x) =$ $\frac{1}{\sqrt{2}}$ $rac{1}{2\pi\sigma^2}$ exp $\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $\left(\frac{z-\mu}{2\sigma^2}\right)$ (p.s. $X \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$)
- Find the mean and variance of Cauchy distribution, i.e., $f_X(x) = {\pi(1+x^2)}^{-1}$, $x \in \mathbb{R}$

$$
\int_1^\infty \frac{x^2}{\pi (1+x^2)} dx \ge \int_1^\infty \frac{x}{\pi (1+x^2)} dx = \infty
$$

Distribution of an RV (con'd)

- Moment generating function (mgf, HMC Sec. 1.9/CB Sec. 2.3)
	- $-M_X(t) = \mathrm{E}\{\exp(tX)\}\$
		- ∗ Continuous *X*: $M_X(t) = \int_{x \in \text{supp}(X)} \exp(tx) f_X(x) dx$
		- ∗ Discrete *X*: $M_X(t) = \sum_{x \in \text{supp}(X)} \exp(tx) p_X(x)$
	- **–** The mgf of *X* is *MX*(*t*), *t* ∈ *A*, ⇔ *MX*(*t*) is finite for *t* in a neighborhood of 0, say *A*; otherwise the mgf does NOT exist or is NOT well defined.
		- ∗ A neighborhood of 0: (−*ϵ*1*, ϵ*2) for certain *ϵ*1*, ϵ*² *>* 0, e.g., an open interval including both positive and negative numbers
	- $-M_{aX+b}(t) = \exp(bt)M_X(at)$
	- **–** Knowing the mgf (if any) of an RV ⇔ knowing its distribution
	- **–** If mgf *M*(*t*) is well-defined, then the *k*th raw moment is the *k*th-order derivative of *M*(*t*) evaluated at 0, i.e., $E(X^k) = M^{(k)}(0)$

Example Lec1.6

• Find the mgf of *X* ∼ $\mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^+$, i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}}$ $rac{1}{2\pi\sigma^2}$ exp $\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $\frac{(-\mu)^2}{2\sigma^2}$

$$
E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx = \frac{\int_{-\infty}^{\infty} \exp\left(tx - \frac{(x-\mu)^2}{2\sigma^2}\right) dx}{\sqrt{2\pi\sigma^2}} = \frac{\exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp\left(-\frac{\left(x - (\mu + \sigma^2 t)\right)^2}{2\sigma^2}\right) dx
$$

• Find the mgf of Cauchy distribution, i.e., $f_X(x) = {\pi(1+x^2)}^{-1}$, $x \in \mathbb{R}$

$$
E\{\exp(tX)\} = \int_{-\infty}^{\infty} \frac{\exp(tx)}{\pi (1+x^2)} dx
$$

- $\frac{1}{1+x^2}$ decreases to 0 polynomially as $x \to \infty$ or $x \to -\infty$.
- $-$ If $t > 0$, then $\exp(tx)$ grows exponentially as $x \to \infty$; if $t < 0$, then $\exp(tx)$ grows exponentially as $x \rightarrow -\infty$.
- $-$ Therefore, $\frac{\exp(tx)}{1+x^2}$ → ∞ as $x \to \infty$ when $t > 0$, and as $x \to -\infty$ when $t < 0$. The integral $E{\exp(tx)}$ does not converge for any nonzero *t*.