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Probability (HMC Sec. 1.1–1.3)
• Sample space (denoted by Ω): the set of all the possible outcomes, e.g.,

– Ω = R+ if investigating survival times of cancer patients
– Ω = {yes, no} if investigating whether a treatment is effective

• Event (denoted by capital Roman letters, e.g., A): a subset of the sample space, e.g., corresponding to
the previous sample spaces,

– (0, 10]: the survival time ≤ 10
– {yes}: the treatment is effective

• Occurrence of event: the outcome is part of the event

• Probability (denoted by Pr): a function quantifying the occurrence likelihood of an event

– E.g.,
∗ Pr(A): the occurrence probability of event A
∗ Pr(Ac): the probability that event A does NOT occur (Ac = Ω \ A denoting the complement

set of A)
∗ Pr(A ∪ B): the occurrence probability of either A or B
∗ Pr(A ∩ B): the occurrence probability of both A and B

– Input: an event
– Output: a real number (the occurrence probability of the input event)
– Requirements:

∗ Pr(A) ≥ 0 for any event A
∗ Pr(Ω) = 1 (i.e., the sample space as a special event always occurs)
∗ (The probability of the union of mutually exclusive countably events is the sum of the

probability of each event) If {An}∞
n=1 is a sequence of events with An1

⋂
An2 = ∅ for all

n1 ̸= n2, then Pr(
⋃∞

n=1 An) =
∑∞

n=1 Pr(An)
– More properties (deduced from the above requirements):

∗ Pr(A) = 1 − Pr(Ac)
∗ Pr(∅) = 0
∗ Pr(A) ≤ Pr(B) if A ⊂ B
∗ 0 ≤ Pr(A) ≤ 1 for each A
∗ limn→∞ Pr(An) = Pr(limn→∞ An) = Pr(

⋃∞
n=1 An) if {An}∞

n=1 is nondecreasing (i.e., A1 ⊂
A2 ⊂ · · ·)

∗ limn→∞ Pr(An) = Pr(limn→∞ An) = Pr(
⋂∞

n=1 An) if {An}∞
n=1 is nonincreasing (i.e., A1 ⊃

A2 ⊃ · · ·)
∗ Pr(A

⋃
B) = Pr(A) + Pr(B) − Pr(A ∩ B) for any events A and B regardless if they are disjoint

or not
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∗ Pr(
⋃∞

n=1 An) ≤
∑∞

n=1 Pr(An) for arbitrary sequence {An}∞
n=1

Conditional probability and independence (HMC Sec. 1.4)
• Conditional probability of B given A (with Pr(A) > 0): Pr(B | A) = Pr(A ∩ B)/ Pr(A)

– Interpretation: the occurrence probability of B, given that A has already occurred.
– Properties:

∗ Pr(B | A) ≥ 0
∗ Pr(A | A) = 1
∗ Pr(

⋃∞
n=1 Bn | A) =

∑∞
n=1 Pr(Bn | A) if {Bn}∞

n=1 are mutually exclusive
∗ (Law of total probability) Pr(B) =

∑N
n=1 Pr(An) Pr(B | An) if {An}N

n=1 form a partition of Ω
(i.e., {An}N

n=1 are mutually exclusive and Ω =
⋃N

n=1 An)
∗ (Bayes’ theorem) Pr(Ai | B) = Pr(Ai) Pr(B | Ai)/

∑N
n=1 Pr(An) Pr(B | An) if {An}N

n=1 form
a decomposition/partition of Ω

• Independence between two events B and A (i.e., B ⊥ A): Pr(B ∩ A) = Pr(A) Pr(B)
– ⇔ B ⊥ Ac

– ⇔ Pr(B | A) = Pr(B) (if Pr(A) ̸= 0)
• Mutual independence among N events A1, . . . , AN : for arbitrary subset of {A1, . . . , AN }, say

{An1 , . . . , AnK
} with 2 ≤ K ≤ N , Pr(

⋂K
k=1 Ank

) =
∏K

k=1 Pr(Ank
)

HMC Ex. 1.4.31
• A French writer, Chevalier de Méré, had asked a famous mathematician, Pascal, to explain why the

following two probabilities were different (the difference had been noted from playing the game many
times): (1) at least one six in four independent casts of a six-sided die; (2) at least a pair of sixes
in 24 independent casts of a pair of dice. From proportions it seemed to Mr. de Méré that the two
probabilities should be the same. Compute the probabilities of (1) and (2).

– Hint: Pr(no six in one cast of a die) = 5/6, Pr(no six in one cast of a pair of dice) = (5/6)2, and
Pr(only one six in one cast of a pair of dice) = 2 × (1/6) × (5/6).

Distribution of an RV (HMC Chp. 1.5–1.7)
• RV: a function encoding the entries of Ω

– Input: arbitrary entry of Ω, say ω
– Output: X(ω) ∈ R

• The cumulative distribution function (cdf) of RV X, say FX , is defined as

FX(t) = Pr(X ≤ t), t ∈ R.

– {X ≤ t}: short for the event {ω ∈ Ω : X(ω) ≤ t}
– FX satisfies following three properties:

∗ (Right continuous) limx→t+ FX(x) = FX(t) (p.s., limx→t− FX(x) = Pr(X < t));
∗ (Non-decreasing) FX(t1) ≤ FX(t2) for t1 ≤ t2;
∗ (Ranging from 0 to 1) FX(−∞) = 0 and FX(∞) = 1.

– Reversely, a function satisfying the three above properties must be a cdf for certain RV.
∗ Indicating an one-to-one correspondence between the set of all the RVs and the set of all the

cdfs
– Knowing the cdf of an RV ⇔ knowing its distribution

Example Lec1.1
• Given p ∈ (0, 1), suppose

FX(x) =
{

1 − (1 − p)⌊x⌋, x ≥ 1,
0, otherwise,

where ⌊x⌋ represents the integer part of real x.
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– Show that FX is a cdf. (Hint: Check all the three properties of cdf, especially the right-continuity
of FX at positive integers.)

• Given λ > 0, suppose

FX(x) =
{

1 − exp(−x/λ), x > 0,
0, otherwise,

– Show that FX is a cdf.

Distribution of an RV (con’d)
• Discrete RV

– RV X merely takes countably different values
– Probability mass function (pmf): pX(t) = Pr(X = t)

∗ FX(t) =
∑

x≤t pX(x)
∗ pX(t) = FX(t) − Pr(X < t) = FX(t) − limx→t− FX(x)

– Knowing the pmf of a discrete RV ⇔ knowing its distribution
– Examples:

∗ Bernoulli: a discrete RV with two possible outcomes, typically coded as 0 (failure) and 1
(success).
· https://en.wikipedia.org/wiki/Bernoulli_distribution

∗ Binomial (denoted by B(n, p)): the number of successes in n independent Bernoulli trials.
· https://en.wikipedia.org/wiki/Binomial_distribution
· E.g., flipping a coin 10 times and counting the number of heads.

∗ Geometric: the number of trials until the first success in a series of independent Bernoulli
trials.
· https://en.wikipedia.org/wiki/Geometric_distribution
· E.g., the number of coin flips needed until the first head appears.

∗ Poisson: the number of events that occur in a fixed interval of time or space, where events
happen independently.
· https://en.wikipedia.org/wiki/Poisson_distribution
· E.g., the number of emails you receive in an hour.

∗ Uniform (the discrete version): each outcome in a finite set has an equal probability.
· https://en.wikipedia.org/wiki/Discrete_uniform_distribution
· E.g., rolling a fair dice, where each of the six faces has an equal chance of landing.

• Continuous RV
– RV X is continuous ⇔ its cdf FX is absolutely continuous, i.e., there exists fX such that

FX(t) =
∫ t

−∞
fX(x)dx, ∀t ∈ R.

∗ Probability density function (pdf): fX(t) = dFX(t)/dt (nonnegative for all t).
·
∫∞

−∞ fX(x)dx = limt→∞
∫ t

−∞ fX(x)dx = limt→∞ FX(t) = 1
∗ Pr(X = x0) = 0 for all x0 ∈ R

· Because Pr(X = x0) = Pr(X ≤ x0) − Pr(X < x0) = FX(x0) − limx→x−
0

FX(x) = 0
– Knowing the pdf of a continuous RV ⇔ knowing its distribution
– Examples:

∗ Uniform (the continuous version): all outcomes in a continuous range are equally likely.
· https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

∗ Normal/Gaussian (denoted by N (µ, σ2)): the most important and widely used distributions,
where data is symmetrically distributed around the mean.
· https://en.wikipedia.org/wiki/Normal_distribution

∗ Exponential: often used to describe waiting times.
· https://en.wikipedia.org/wiki/Exponential_distribution
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Example Lec1.2
• Given λ > 0, suppose

FX(x) =
{

1 − exp(−x/λ), x > 0,
0, otherwise,

– What is the type of X, discrete or continuous?
• Given p ∈ (0, 1), suppose

FX(x) =
{

1 − (1 − p)⌊x⌋, x ≥ 1,
0, otherwise,

where ⌊x⌋ represents the integer part of x.
– What is the type of X, discrete or continuous?

Support of RV (CB pp. 50 & HMC pp. 46)
• For discrete RV X with pmf pX

– supp(X) = {x ∈ R : pX(x) > 0}
– E.g., support of B(n, p) is {0, . . . , n}
–
∑

x∈supp(X) pX(x) = 1
• For continuous RV X with pdf fX

– supp(X) = {x ∈ R : fX(x) > 0}
– E.g., support of N (0, 1) is R
–
∫

supp(X) fX(x)dx = 1

Example Lec1.3
• Revisit FX defined in Example Lec1.1, i.e.,

FX(x) =
{

1 − (1 − p)⌊x⌋, x ≥ 1,
0, otherwise,

where ⌊x⌋ represents the integer part of real x.
– What is the support of X?

Indicator function
Given a set A, the indicator function of A is

1A(x) =
{

1, x ∈ A,

0, otherwise.

Example Lec1.4
• Revisit FX defined in Example Lec1.1, i.e.,

FX(x) =
{

1 − (1 − p)⌊x⌋, x ≥ 1,
0, otherwise,

where ⌊x⌋ represents the integer part of x.
– Please reformulate FX with the indicator function of A = {x : x ≥ 1}.

Indicating the support when writing pmf and pdf
• Bernoulli: https://en.wikipedia.org/wiki/Bernoulli_distribution

• Binomial (denoted by B(n, p)): https://en.wikipedia.org/wiki/Binomial_distribution
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– pX(k) =
(

n
k

)
pk(1 − p)n−k · 1{0,1,...,n}(k)

∗ OR
(

n
k

)
pk(1 − p)n−k, k ∈ {0, 1, . . . , n}

• Geometric: https://en.wikipedia.org/wiki/Geometric_distribution

– pX(k) = (1 − p)k−1p · 1Z+(k)
∗ OR (1 − p)k−1p, k ∈ Z+

• Poisson: https://en.wikipedia.org/wiki/Poisson_distribution

– pX(k) = λk exp(−λ)/k! · 1{0,1,2,...}(k)
∗ OR λk exp(−λ)/k!, k ∈ {0, 1, 2, . . .}

• Uniform (the discrete version; denoted by U([a, b]) with integers a < b): https://en.wikipedia.org/wiki/
Discrete_uniform_distribution

– pX(k) = 1/(b − a + 1) · 1{a,a+1,...,b−1,b}(k)
∗ OR 1/(b − a + 1), k ∈ {a, a + 1, . . . , b − 1, b}

• Uniform (the continuous version): https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

• Normal/Gaussian (denoted by N (µ, σ2)): https://en.wikipedia.org/wiki/Normal_distribution

• Exponential: https://en.wikipedia.org/wiki/Exponential_distribution

– fX(x) = λ exp(−λx) · 1[0,∞)(x)
∗ OR λ exp(−λx), x ≥ 0

Expectations (HMC Sec. 1.8–1.9)
• Given RV X and function g, the expectation of g(X) is

E{g(X)} =
{∫

x∈supp(X) g(x)fX(x)dx for continuous X∑
x∈supp(X) g(x)pX(x) for discrete X

– Weighted average of values of g(X)
– E{a1g1(X) + a2g2(X)} = a1E{g1(X)} + a2E{g2(X)} for constants a1 and a2

• Examples
– Taking g(X) = X

E(X) =
{∫

x∈supp(X) xfX(x)dx for continuous X∑
x∈supp(X) xpX(x) for discrete X

∗ The mean of X (a.k.a. the 1st raw moment/moment about 0 of X)
∗ E(aX + b) = aE(X) + b for constants a and b

– Taking g(X) = Xk with positive integer k:

E(Xk) =
{∫

x∈supp(X) xkfX(x)dx for continuous X∑
x∈supp(X) xkpX(x) for discrete X

∗ The kth raw moment/moment about 0 of X
– Taking g(X) = {X − E(X)}2:

Var(X) = E[{X − E(X)}2] =
{∫

x∈supp(X){x − E(X)}2fX(x)dx for continuous X∑
x∈supp(X){x − E(X)}2pX(x) for discrete X

∗ Variance of X (a.k.a. the 2nd central moment of X)
∗ Measuring how spread out the data are if they are independently generated following FX

∗ Var(X) = E(X2) − {E(X)}2
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∗ Var(aX + b) = a2Var(X)
∗ sd(X) =

√
Var(X): the standard deviation of X

– Taking g(X) = 1A(X):
E{1A(X)} = Pr(X ∈ A)

Example Lec1.5

• Find the mean and variance of X ∼ N (0, 1), i.e., fX(x) = 1√
2π

exp
(

− x2

2

)
E(X) =

∫
R

xfX(x)dx
x exp(−x2/2) is odd=

∫
R

x√
2π

exp(−x2/2)dx = 0

Var(X) even x2 exp(−x2/2)= 2
∫ ∞

0

x2 exp(−x2/2)√
2π

dx
u=x2/2= 2

∫ ∞

0

2u exp(−u)√
2π

d
√

2u = 2Γ(3/2)√
π

= 1

• Find the mean and variance of X ∼ N (µ, σ2) with µ ∈ R and σ ∈ R+, i.e., fX(x) =
1√

2πσ2 exp
(

− (x−µ)2

2σ2

)
(p.s. X ∼ N (µ, σ2) ⇔ Z = (X − µ)/σ ∼ N (0, 1))

• Find the mean and variance of Cauchy distribution, i.e., fX(x) = {π(1 + x2)}−1, x ∈ R∫ ∞

1

x2

π (1 + x2)dx ≥
∫ ∞

1

x

π (1 + x2)dx = ∞

Distribution of an RV (con’d)
• Moment generating function (mgf, HMC Sec. 1.9/CB Sec. 2.3)

– MX(t) = E{exp(tX)}
∗ Continuous X: MX(t) =

∫
x∈supp(X) exp(tx)fX(x)dx

∗ Discrete X: MX(t) =
∑

x∈supp(X) exp(tx)pX(x)
– The mgf of X is MX(t), t ∈ A, ⇔ MX(t) is finite for t in a neighborhood of 0, say A; otherwise

the mgf does NOT exist or is NOT well defined.
∗ A neighborhood of 0: (−ϵ1, ϵ2) for certain ϵ1, ϵ2 > 0, e.g., an open interval including both

positive and negative numbers
– MaX+b(t) = exp(bt)MX(at)
– Knowing the mgf (if any) of an RV ⇔ knowing its distribution
– If mgf M(t) is well-defined, then the kth raw moment is the kth-order derivative of M(t) evaluated

at 0, i.e., E(Xk) = M (k)(0)

Example Lec1.6

• Find the mgf of X ∼ N (µ, σ2) with µ ∈ R and σ ∈ R+, i.e., fX(x) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)

E(etX) =
∫ ∞

−∞
etxfX(x)dx =

∫∞
−∞ exp

(
tx − (x−µ)2

2σ2

)
dx

√
2πσ2

=
exp

(
µt + σ2t2

2

)
√

2πσ2

∫ ∞

−∞
exp

(
−
(
x − (µ + σ2t)

)2

2σ2

)
dx

• Find the mgf of Cauchy distribution, i.e., fX(x) = {π(1 + x2)}−1, x ∈ R

E{exp(tX)} =
∫ ∞

−∞

exp(tx)
π (1 + x2)dx

– 1
1+x2 decreases to 0 polynomially as x → ∞ or x → −∞.

– If t > 0, then exp(tx) grows exponentially as x → ∞; if t < 0, then exp(tx) grows exponentially as
x → −∞.

– Therefore, exp(tx)
1+x2 → ∞ as x → ∞ when t > 0, and as x → −∞ when t < 0. The integral

E{exp(tx)} does not converge for any nonzero t.
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