PH 712 Probability and Statistical Inference

Part IV: Normal sampling theory

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Oct/01 16:49:03

Random samples, realizations and statistics

- RVs X_1, \ldots, X_n : a random sample of size n
 - Independent and identially distributed (iid) sample: X_1, \ldots, X_n are iid
 - iid normal sample: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Realization: the actual observed value or outcome of an RV
 - Denoted by lowercase letters
 - E.g.,
 - * x_i is the realization of X_i if $X_i = x_i$ is observed
 - * Observed $X_1 = x_1, \dots, X_n = x_n \Rightarrow x_1, \dots, x_n$ is the realization of X_1, \dots, X_n
- Statistic: any function of a random sample, e.g.,

 - Sample mean: $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ Sample variance: $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ Sample standard deviation: $S = \sqrt{(n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2}$

Defining χ^2 -, t-, and F-RVs in terms of an iid normal sample (HMC Chp. 3)

- $\sum_{i=1}^n X_i^2 \sim \chi^2(n)$ if $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$
 - $-Q \sim \chi^2(n) \Rightarrow E(Q) = n \text{ and } var(Q) = 2n$
- $Z/\sqrt{Q/n} \sim t(n)$ if $Z \sim \mathcal{N}(0,1)$ and $Q \sim \chi^2(n)$ are independent of each other
- $(P/m)/(Q/n) \sim F(m,n)$ if $P \sim \chi^2(m)$ and $Q \sim \chi^2(n)$ are independent of each other

More identities for an iid normal sample

- $n^{1/2}(\bar{X} \mu)/\sigma \sim \mathcal{N}(0, 1)$
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- $\bar{X} \perp S^2$
- $n^{1/2}(\bar{X}-\mu)/S \sim t(n-1)$