PH 712 Probability and Statistical Inference Part V: Point Estimation I

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Oct/08 17:15:54

Recall types of the stochastic model

- Stochastic model: the distribution of RVs of interest
 - Parametric model
 - Non-parametric model
 - Semi-parametric model

Parametric model

- A set of pdfs/pmfs indexed by p-dimensional unknown θ (constrained in Θ) with small or moderate dimension p, i.e., $\{f(\cdot \mid \boldsymbol{\theta}) : \boldsymbol{\theta} \in \boldsymbol{\Theta} \subset \mathbb{R}^p\}$ with
 - $-f(\cdot \mid \boldsymbol{\theta})$: either a pdf or a pmf
 - Θ : the set of allowed values of θ
- True parameters, say θ_0 , believed to be fixed (frequentist statistics)
 - Rather than randomizing $\boldsymbol{\theta}_0$ (Bayesian statistics)
- Estimator: a statistic (i.e., a function of the sample); a guess about θ_0
- Estimate: plugging the realization into the estimator
- p = 1 hereafter, i.e., considering only one unknown parameter

Method of moments (MM, CB Sec 7.2.1)

- Procedure
 - 1. Equate RAW moments $(E(X_i^k))$ to their empirical counterparts $(n^{-1}\sum_{i=1}^n X_i^k)$.

2. Solve the resulting simultaneous equations for θ .

- Pros and cons
 - Easy implementation
 - Start point for more complex methods
 - No constraint
 - Not uniquely defined

Example Lec5.1

- Suppose X_1, \ldots, X_n is an iid sample following distributions as below. Find the MM estimator in each scenario.
 - a. $\mathcal{N}(\mu, \sigma^2)$, with unknown $\mu \in \mathbb{R}$ and known $\sigma > 0$.

 - b. $\mathcal{N}(\mu, \sigma^2)$, with known $\mu \in \mathbb{R}$ and unknown $\sigma > 0$. c. $Bern(\theta): p_X(x \mid \theta) = \theta^x (1 \theta)^{1-x} \mathbf{1}_{\{0,1\}}(x), \ \theta \in [0, 1/2].$

d. Exponential: $f_X(x \mid \beta) = \beta^{-1} \exp(-x/\beta) \mathbf{1}_{(0,\infty)}(x), \ \beta > 0.$ e. $f_X(x \mid \theta) = \theta x^{\theta - 1} \mathbf{1}_{[0,1]}(x), \ \theta > 0.$

Maximum Likelihood (ML) Estimator (MLE, CB Sec 7.2.2)

- Likelihood:
 - a real-valued function of unknown θ

$$L(\theta) = L(\theta; X_1, \dots, X_n) = f_{X_1, \dots, X_n}(X_1, \dots, X_n \mid \theta), \quad \theta \in \Theta$$

- f_{X_1,\ldots,X_n} : the joint pdf/pmf of X_1,\ldots,X_n

• Log-likelihood: the natural logarithm of likelihood

$$\ell(\theta) = \ln L(\theta), \quad \theta \in \Theta$$

• If $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ is the maximizer of $L(\theta)$ (equiv. the maximizer of $\ell(\theta)$) with respect to θ constrained in Θ , i.e.,

$$\hat{\theta}(X_1,\ldots,X_n) = \arg\max_{\theta\in\Theta} L(\theta) = \arg\max_{\theta\in\Theta} \ell(\theta),$$

then $\hat{\theta}$ is the MLE for θ .

• Invariance (CB Thm 7.2.10): if $\hat{\theta}$ is the MLE of θ , then $g(\hat{\theta})$ is the MLE of $g(\theta)$ for any given function $g(\cdot)$.

How to locate the MLE constrained in Θ ?

- If $\ell(\theta)$ is monotonic with respect to $\theta \in \Theta$, then the MLE lies at one boundary point of Θ
- If $\ell(\theta)$ is non-monotonic but differentiable with respect to $\theta \in \Theta$, then
 - 1. Collect all the candidates including:
 - Stationary points, i.e., solutions to the equation $S(\theta) = 0$ subject to $\theta \in \Theta$

* Where $S(\theta) = \ell'(\theta)$ is called the score

– Boundary points of Θ

2. Compare the values of log-likelihood or likelihood evaluated at all the above candidates

Example Lec5.1'

- Suppose X₁,..., X_n is an iid sample following distributions as below. Find the MLE in each scenario.
 a. N(μ, σ²), with unknown μ ∈ ℝ and known σ > 0.
 - b. $\mathcal{N}(\mu, \sigma^2)$, with known $\mu \in \mathbb{R}$ and unknown $\sigma > 0$.
 - c. $Bern(\theta)$: $p_X(x \mid \theta) = \theta^x (1-\theta)^{1-x} \mathbf{1}_{\{0,1\}}(x), \ \theta \in [0, 1/2].$
 - d. Exponential: $f_X(x \mid \beta) = \beta^{-1} \exp(-x/\beta) \mathbf{1}_{(0,\infty)}(x), \beta > 0.$
 - e. $f_X(x \mid \theta) = \theta x^{\theta 1} \mathbf{1}_{[0,1]}(x), \ \theta > 0.$