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Recall types of the stochastic model
• Stochastic model: the distribution of RVs of interest

– Parametric model
– Non-parametric model
– Semi-parametric model

Parametric model
• A set of pdfs/pmfs indexed by p-dimensional unknown θ (constrained in Θ) with small or moderate

dimension p, i.e., {f(· | θ) : θ ∈ Θ ⊂ Rp} with

– f(· | θ): either a pdf or a pmf
– Θ: the set of allowed values of θ

• True parameters, say θ0, believed to be fixed (frequentist statistics)

– Rather than randomizing θ0 (Bayesian statistics)

• Estimator: a statistic (i.e., a function of the sample); a guess about θ0

• Estimate: plugging the realization into the estimator

• p = 1 hereafter, i.e., considering only one unknown parameter

Method of moments (MM, CB Sec 7.2.1)
• Procedure

1. Equate RAW moments (E(Xk
i )) to their empirical counterparts (n−1 ∑n

i=1 Xk
i ).

2. Solve the resulting simultaneous equations for θ.
• Pros and cons

– Easy implementation
– Start point for more complex methods
– No constraint
– Not uniquely defined

Example Lec5.1
• Suppose X1, . . . , Xn is an iid sample following distributions as below. Find the MM estimator in each

scenario.
a. N (µ, σ2), with unknown µ ∈ R and known σ > 0.
b. N (µ, σ2), with known µ ∈ R and unknown σ > 0.
c. Bern(θ): pX(x | θ) = θx(1 − θ)1−x1{0,1}(x), θ ∈ [0, 1/2].
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d. Exponential: fX(x | β) = β−1 exp(−x/β)1(0,∞)(x), β > 0.
e. fX(x | θ) = θxθ−11[0,1](x), θ > 0.

Maximum Likelihood (ML) Estimator (MLE, CB Sec 7.2.2)
• Likelihood:

– a real-valued function of unknown θ

L(θ) = L(θ; X1, . . . , Xn) = fX1,...,Xn(X1, . . . , Xn | θ), θ ∈ Θ

– fX1,...,Xn
: the joint pdf/pmf of X1, . . . , Xn

• Log-likelihood: the natural logarithm of likelihood

ℓ(θ) = ln L(θ), θ ∈ Θ

• If θ̂ = θ̂(X1, . . . , Xn) is the maximizer of L(θ) (equiv. the maximizer of ℓ(θ)) with respect to θ
constrained in Θ, i.e.,

θ̂(X1, . . . , Xn) = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

ℓ(θ),

then θ̂ is the MLE for θ.

• Invariance (CB Thm 7.2.10): if θ̂ is the MLE of θ, then g(θ̂) is the MLE of g(θ) for any given function
g(·).

How to locate the MLE constrained in Θ?
• If ℓ(θ) is monotonic with respect to θ ∈ Θ, then the MLE lies at one boundary point of Θ

• If ℓ(θ) is non-monotonic but differentiable with respect to θ ∈ Θ, then

1. Collect all the candidates including:
– Stationary points, i.e., solutions to the equation S(θ) = 0 subject to θ ∈ Θ

∗ Where S(θ) = ℓ′(θ) is called the score
– Boundary points of Θ

2. Compare the values of log-likelihood or likelihood evaluated at all the above candidates

Example Lec5.1’
• Suppose X1, . . . , Xn is an iid sample following distributions as below. Find the MLE in each scenario.

a. N (µ, σ2), with unknown µ ∈ R and known σ > 0.
b. N (µ, σ2), with known µ ∈ R and unknown σ > 0.
c. Bern(θ): pX(x | θ) = θx(1 − θ)1−x1{0,1}(x), θ ∈ [0, 1/2].
d. Exponential: fX(x | β) = β−1 exp(−x/β)1(0,∞)(x), β > 0.
e. fX(x | θ) = θxθ−11[0,1](x), θ > 0.
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