PH 712 Probability and Statistical Inference

Part VIII: Point Estimation II (Aympototic Properties)

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

Consistency of MM and ML estimators

- For an iid sample, under certain conditions:
 - $-\theta_{\rm MM} \approx \theta \text{ as } n \to \infty$
 - $-\hat{\theta}_{\rm ML} \approx \theta \text{ as } n \to \infty$

Asymptotic efficiency of ML estimator (CB Thm 10.1.12 & Ex. 10.7)

- For an iid sample, under certain conditions:
- $-\sqrt{n}(\hat{\theta}_{\mathrm{ML}} \theta) \approx \mathcal{N}(0, I_1^{-1}(\theta)) \text{ as } n \to \infty$ * For an iid sample, $I_1(\theta) = n^{-1}I_n(\theta)$, no longer a function of n

Approximating the distribution of $\hat{\theta}_{\mathrm{ML}}$:

- In practice, unknown $\theta \Rightarrow$ unknown $I_n(\theta)$
- $I_n(\theta) \approx I_n(\hat{\theta}_{\mathrm{ML}}) \approx \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$
 - Fisher information evaluated at $\hat{\theta}_{ML}$: $I_n(\hat{\theta}_{ML}) = E\{-\ell'(\theta)\} \mid_{\theta = \hat{\theta}_{ML}}$
 - Observed Fisher information (i.e., the minus Hessian evaluated at $\hat{\theta}_{\rm ML}$): $\hat{I}_n(\hat{\theta}_{\rm ML}) = -\ell''(\hat{\theta}_{\rm ML})$
- Approximately, $\hat{\theta}_{\mathrm{ML}}$ is normally distributed with mean θ and variance $I_n^{-1}(\theta)$, $I_n^{-1}(\hat{\theta}_{\mathrm{ML}})$ OR $\hat{I}_n^{-1}(\hat{\theta}_{\mathrm{ML}})$, depending on 1) whether θ is allowed in the result AND 2) how convenient it is to take the expectation of $\ell''(\theta)$.

Delta method

- Approximating the distribution of $h(T_n)$ when T_n is normally distributed as $n \to \infty$
- (CB Thm 5.5.24, delta method) Suppose T_n is an estimator of θ . If $\sqrt{n}(T_n \theta) \approx \mathcal{N}(0, \sigma^2)$, h is NOT a function of n, AND $h'(\theta) \neq 0$, then

$$\sqrt{n}\{h(T_n) - h(\theta)\} \approx \mathcal{N}(0, \{h'(\theta)\}^2 \sigma^2).$$

- $-\Rightarrow \mathbb{E}\{h(T_n)\}\approx h(\theta) \text{ AND } \operatorname{var}\{h(T_n)\}\approx \{h'(\theta)\}^2\sigma^2/n \text{ if } h'(\theta)\neq 0.$
- (CB Thm 5.5.26, second-order delta method) Suppose T_n is an estimator of θ . If $\sqrt{n}(T_n \theta) \approx \mathcal{N}(0, \sigma^2)$, h is NOT a function of n, $h'(\theta) = 0$, AND $h''(\theta) \neq 0$, then

$$\frac{2n\{h(T_n) - h(\theta)\}}{h''(\theta)\sigma^2} \approx \chi^2(1).$$

 $-\Rightarrow \mathbb{E}\{h(T_n)\}\approx h(\theta)+h''(\theta)\sigma^2/(2n) \text{ AND } \operatorname{var}\{h(T_n)\}\approx \{h''(\theta)\}^2\sigma^4/(2n^2) \text{ if } h'(\theta)=0 \text{ and }$ $h''(\theta) \neq 0.$

CB Example 10.1.17 & Ex. 10.9

- $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, \ x \in \mathbb{Z}^+ \cup \{0\}, \ \lambda > 0$. To estimate $h(\lambda) = \Pr(X_i = 0)$. 1. What is the MLE for $\Pr(X_i = 0)$, say W_n ?

 - 2. Approximate the variance of W_n . 3. Suppose $T_n = n^{-1} \sum_i \mathbf{1}_{\{0\}}(X_i)$. What is the variance of T_n ? 4. Compute $ARE(T_n, W_n)$, the ARE of T_n with respect to W_n .