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Is it a squirrel?

Figure 1: Flying Squirrel (Photograph by Joel Sartore)

• Make a decision between two hypotheses H0 : YES and H1: NO.
– Checking necessary conditions under H0

• It is a binary classification problem.

Problem formalization
• Assumptions

– X1, . . . , Xn
iid∼ f(x | θ)

∗ θ is fixed and unknown BUT is believed to be inside Θ
– To make a decision on θ between two hypotheses H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1

∗ Θ0 ∪ Θ1 = Θ
∗ Θ0 ∩ Θ1 = ∅

• Four possible outcomes
– True positive (TP): H0 is wrong (i.e., H1 is true) and we reject H0 (i.e., accept H1);
– False positive (FP, type I error): H0 is true (i.e., H1 is wrong) but we reject H0 (i.e., accept H1);
– True negative (TN): H0 is true (i.e., H1 is wrong) and we accept H0 (i.e., reject H1);
– False negative (FN, type II error): H0 is wrong (i.e., H1 is true) but we accept H0 (i.e., reject H1).
– E.g., in the context of identifying the animal,

∗ TP: it is NOT a squirrel and is NOT identified as a squirrel
∗ FP: it is a squirrel but is NOT identified as a squirrel
∗ TN: it is a squirrel and is identified as a squirrel
∗ FN: it is NOT a squirrel but is identified as a squirrel
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Accept H0 Reject H0

H0 is true True negative (TN) False positive (FP, type I error)
H0 is false False negative (FN, type II error) True positive (TP)

• Different objectives leading to different strategies:
– Minimizing the misclassification rate: Pr(FP) + Pr(FN)

∗ Commonly adopted by classification techniques
– Controlling the false discovery rate (FDR): Pr(FP)/{Pr(FP) + Pr(TP)}

∗ For sequential or simultaneous testing
– Minimizing Pr(FN) with Pr(FP) capped; specifically, minimizing Pr(type II error) with

Pr(type I error) ≤ α
∗ Leading to the optimal hypothesis test

Formalizing the hypothesis test
• A test, say ϕ, is an indicator function

ϕ(x1, . . . , xn) = 1R(x1, . . . , xn) =
{

0, (x1, . . . , xn) /∈ R

1, (x1, . . . , xn) ∈ R

– Input: the sample or its realization
– Output: the action after observing the input, i.e., 0 (accepting H0) or 1 (rejecting H0)
– Rejection region: R, the set corresponding to the rejection of H0

∗ R is typically specified in terms of the realization of a test statistic; e.g., if R = {(x1, . . . , xn) :
x̄ ≥ 3}, then X̄ is a test statistic.

• Each test corresponds to a unique rejection region
– Two tests are equivalent ⇔ their rejection regions are identical

Uniformly most powerful (UMP) level α test (CB Sec 8.3.2)
• Power function: given a test ϕ and its rejection region R, the power function βϕ(θ) is the probability of

rejecting H0: for all θ ∈ Θ,

βϕ(θ) = Pr{(X1, . . . , Xn) ∈ R} = Pr{ϕ(X1, . . . , Xn) = 1}

– Preferring large βϕ(θ) for all θ ∈ Θ1 and small βϕ(θ) for all θ ∈ Θ0, because
∗ Pr(type I error) = βϕ(θ0) if H0 is correct (θ0 ∈ Θ0)
∗ Pr(type II error) = 1 − βϕ(θ0) if H1 is correct (θ0 ∈ Θ1)
∗ But θ0 is unknown

• A test ϕ is of size α ⇔ supθ∈Θ0 βϕ(θ) = α
– supθ∈Θ0 βϕ(θ): the supremum of βϕ(θ) in Θ0 ⇔ the maximum of βϕ(θ) in the closure of Θ0
– supθ∈Θ0 βϕ(θ) = α ⇒ Pr(type I error) ≤ α

• A test ϕ is of level α ⇔ supθ∈Θ0 βϕ(θ) ≤ α
– supθ∈Θ0 βϕ(θ): the supremum of βϕ(θ) in Θ0 ⇔ the maximum of βϕ(θ) in the closure of Θ0
– supθ∈Θ0 βϕ(θ) ≤ α ⇒ Pr(type I error) ≤ α

• Let ϕ be a level α test for H0 : θ0 ∈ Θ0 vs H1 : θ0 ∈ Θ1. If βϕ(θ) ≥ βϕ′(θ) for all θ ∈ Θ1 and any other
test ϕ′ of level α, then ϕ is a UMP level α test.

Example Lec9.1

• X1, . . . , Xn
iid∼ N (θ, σ2) with unknown θ and known σ. Consider a test for H0 : θ = θ0 vs H1 : θ ̸= θ0

with rejection region {(x1, . . . , xn) :
√

n|x̄ − θ0|/σ > c}.
1. Elaborate the power function.
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2. Find sample size n and threshold c if one desires that the type I error rate is 5% and the type II
error rate at θ0 + σ is 25%.

N = 100
type2.err.rates = numeric(N)
c = -qnorm(.025)
f = function(n){

pnorm(c-nˆ.5)-pnorm(-c-nˆ.5)
}
for (n in 1:N) {

type2.err.rates[n] = f(n)
}
type2.err.rates # all the type II rates
min((1:N)[type2.err.rates<=.25]) # the min n such that the type II rate is lower than 25%

Likelihood ratio test (LRT, CB Sec. 8.2.1 & 10.3.1)
• Hypotheses: H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

– Θ = Θ0 ∪ Θ1
– Θ0 ∩ Θ1 = ∅

• Test statistic

λ(X1, . . . , Xn) = L(θ̂ML,0)
L(θ̂ML)

– θ̂ML,0: MLE of θ under H0
– θ̂ML: MLE of θ ∈ Θ

• Rejection region
R = {(x1, . . . , xn) : λ(x1, . . . , xn) ≤ cα},

where cα is chosen to make sure the size is α, i.e.,
sup

θ∈Θ0

βϕ(θ) = sup
θ∈Θ0

Pr{λ(X1, . . . , Xn) ≤ cα} = α.

– Essential but challenging to know the distribution of λ(X1, . . . , Xn) under H0
• Implementation

1. Confirm the value of α;
2. Figure out θ̂ML,0 and θ̂ML.
3. Solve the following equation for cα

sup
θ∈Θ0

βϕ(θ) = sup
θ∈Θ0

Pr{λ(X1, . . . , Xn) ≤ cα} = α;

4. Construct the rejection region {(x1, . . . , xn) : λ(x1, . . . , xn) ≤ cα}.
• Why is LRT promoted?

– Neyman-Pearson Lemma (CB Thm 8.3.12): LRT is the UMP level α test for simple hypotheses
(H0 : θ = θ0 vs H1 : θ = θ1)

– Karlin-Rubin theorem (CB Thm 8.3.17): under certain conditions, LRT is the UMP level α test
for one-sided hypotheses (H0 : θ ≤ θ0 (or θ = θ0) vs H1 : θ > θ0 OR H0 : θ ≥ θ0 (or θ = θ0) vs
H1 : θ < θ0)

– There is No UMP test for two-sided hypotheses (H0 : θ = θ0 vs H1 : θ ̸= θ0) but LRT is UMP
unbiased test for this scenario.

• Special cases
– Equvalent to the Z-test if 1) the sample is iid normal with known variance and 2) the mean is to

be tested
– Equvalent to the t-test if 1) the sample is iid normal with unknown variance and 2) the mean is to

be tested
– Equvalent to the F -test if 1) the sample is iid normal with the mean and variance both unknown

and 2) the variance is to be tested
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LRT (con’d)
• Asymptotic rejection region (CB Thm 10.3.3)

R ≈ {(x1, . . . , xn) : −2 ln λ(x1, . . . , xn) ≥ χ2
ν,1−α} = {(x1, . . . , xn) : λ(x1, . . . , xn) ≤ exp(−χ2

ν,1−α/2)},

where χ2
ν,1−α is the (1 − α) quantile of χ2(ν), i.e., Fχ2(ν)(χ2

ν,1−α) = 1 − α.
– (CB Thm 10.3.1) Because, as n → ∞, under H0,

−2 ln λ(X1, . . . , Xn) ≈ χ2(ν),

where ν = the difference of numbers of free parameters between Θ0 and Θ.
• Implementation (asymptotic)

1. Confirm the value of α;
2. Figure out θ̂0,ML and θ̂ML;
3. Check ν, the difference of numbers of free parameters between Θ0 and Θ;
4. Construct the asymptotic rejection region {x1, . . . , xn : −2 ln λ(x1, . . . , xn) ≥ χ2

ν,1−α}.

CB Ex 8.2
• For a given city in a given year, assume that the number of automobile accidents follows a Poisson

distribution. In past years the average number of accidents per year was 15, and this year it was 10. Is
it justified to claim that the accident rate has dropped?

• Demo report: Testing hypotheses H0 : __ vs. H1 : __ , we carried on the __ test and obtained __
as the value of test statistic. The corresponding rejection region is __ . So, at the __ level, there
was/wasn’t a strong statistical evidence against H0, i.e., we believed that __ .

p-value (CB Sec 8.3.4)
• Motivation

– Recall that a rejection region R consists of a test statistic (e.g., λ(X1, . . . , Xn) for LRT) and
critical point (e.g., cα for LRT)

∗ The test statistic NOT uniquely defined
∗ The critical point varying with the definition of test statistic

– Would like to fix the critical point to be α by defining a test statistic p(X1, . . . , Xn) (i.e., p-value)
such that the following set is equivalent to R

{(x1, . . . , xn) : p(x1, . . . , xn) ≤ α}

∗ More convenient in communication because the critical point is α by default
• NOT always well-defined

• (CB Thm 8.3.27) If H0 is rejected when a test statistic T (x1, . . . , xn) is too large, then

p(x1, . . . , xn) = sup
θ∈Θ0

Pr{T (X1, . . . , Xn) ≥ T (x1, . . . , xn)}.

CB Ex 8.2
• For a given city in a given year, assume that the number of automobile accidents follows a Poisson

distribution. In past years the average number of accidents per year was 15, and this year it was 10. Is
it justified to claim that the accident rate has dropped?

• Demo report: Testing hypotheses H0 : __ vs. H1 : __ , we carried on the __ test and obtained __
as the p-value. So, at the __ level, there was/wasn’t a strong statistical evidence against H0, i.e., we
believed that __ .
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Example Lec9.2

• X1, . . . , Xn
iid∼ N (µ, σ2). Consider H0 : µ = µ0 vs H1 : µ ̸= µ0.

1. Verify that the size α LRT rejects H0 when |x̄ − µ0| > tn−1,1−α/2(s/
√

n), where s =√
(n − 1)−1 ∑

i(xi − x̄)2.
2. Find the the expression of p-value for LRT.

Wald test (CB pp. 493)
• Testing H0 : θ = θ0 vs. H1 : θ ̸= θ0

• With an estimator θ̂ such that (θ̂ − θ0)/
√

var(θ̂) ≈ N (0, 1) under H0 as n → ∞

• Test statistic: (θ̂ − θ0)/
√

var(θ̂)
– Asymptotically equivalent to LRT for this two sided test if θ̂ = θ̂ML
– Substitute v̂ar(θ̂) for var(θ̂) if var(θ̂) is well approximated by v̂ar(θ̂) (obtained by the delta

methods/bootstrap)
• Level α Wald rejection region: {(x1, . . . , xn) : |θ̂ − θ0|/

√
var(θ̂) ≥ Φ−1

1−α/2}
– Φ−1

1−α/2: the (1 − α/2) quantile of N (0, 1)

• p-value = 2Φ
(

−|θ̂ − θ0|/
√

var(θ̂)
)

– Φ(·): cdf of N (0, 1)

Score test (CB pp. 494)
• Testing H0 : θ = θ0 vs. H1 : θ ̸= θ0

• Test statistic: ℓ′(θ0)/
√

In(θ0) (≈ N (0, 1) under H0 as n → ∞)

• Level α score rejection region: {(x1, . . . , xn) : |ℓ′(θ0)|/
√

In(θ0) ≥ Φ−1
1−α/2}.

• p-value = 2Φ
(

−|ℓ′(θ0)|/
√

In(θ0)
)

CB Examples 10.3.5 & 10.3.6

• X1, . . . , Xn
iid∼ Bern(p), p ∈ (0, 1). Derive LRT, Wald and score tests for H0 : p = p0 versus H1 : p ̸= p0.
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