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Framework of statistical inference/learning
• Goal: infer/learn the distribution of RV X, say fX , from a random sample X1, . . . , Xn

• Assumption: fX ≈ f̂X (statistical model)

– E.g., f̂X = N (µ, σ2), reducing the task to estimating (µ, σ)

• Point estimation: make the “best” guess about unknown parameter(s)

– E.g., estimate (µ, σ) by (µ̂, σ̂)

• Hypothesis testing

– E.g., confirm whether µ = 0 by testing H0 : µ = 0 vs. H1 : µ ̸= 0

• Interval estimation: construct an interval likely to cover the unknown parameter

– E.g., construct an interval, say (c1, c2), such that c1 < µ < c2 with a high probability

Point estimation
• θ: the unknown parameter

– A unknown scalar (i.e., we only consider cases with one unknown parameter)

• The generation of a guess on the value of θ based on the random sample X1, . . . , Xn

• Estimator: the generated guess, say θ̂

– A statistic (why?) and hence an RV
– E.g., sometimes, X̄ = n−1 ∑n

i=1 Xi (sample mean) is an estimator of certain parameter θ

• Estimate: plugging the realization of the random sample, say x1, . . . , xn, into the estimator

– A number (why?) and NOT randomized
– E.g., n−1 ∑n

i=1 xi is an estimate of certain parameter θ

Maximum Likelihood (ML) Estimator (MLE)
• Θ: the set of allowed values of θ

• Likelihood function: an alias of joint pdf/pmf

L(θ) = L(θ; X1, . . . , Xn) = fX1,...,Xn
(X1, . . . , Xn | θ), θ ∈ Θ

– fX1,...,Xn
: the joint pdf/pmf of X1, . . . , Xn
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• Log-likelihood function: the natural logarithm of likelihood function

ℓ(θ) = ln L(θ), θ ∈ Θ

• θ̂ML is the MLE for θ if θ̂ML is the maximizer of L(θ) (equiv. the maximizer of ℓ(θ)) with respect to θ
constrained in Θ

– In the math notation,
θ̂ML = arg max

θ∈Θ
L(θ) = arg max

θ∈Θ
ℓ(θ)

– That is to say, L(θ̂ML) ≥ L(θ) and ℓ(θ̂ML) ≥ ℓ(θ), for all θ ∈ Θ.

• Invariance property of MLE: if θ̂ML is the MLE of θ, then g(θ̂ML) is the MLE of g(θ) for any given
function g(·).

How to locate the ML estimator (MLE) constrained in Θ?
• If L(θ) (or equiv. ℓ(θ)) is monotonic with respect to θ ∈ Θ, then the MLE lies at one boundary point

of Θ

• If ℓ(θ) is non-monotonic but differentiable with respect to θ ∈ Θ, then

1. Collect all the candidates including:
– Stationary points, i.e., solutions to the equation S(θ) = 0 subject to θ ∈ Θ

∗ Where S(θ) = ℓ′(θ) is called the score/gradient
– Boundary points of Θ

2. Compare the values of log-likelihood or likelihood evaluated at all the above candidates

How to locate the ML estimate constrained in Θ?
• Reachable only when the realization of X1, . . . , Xn are available

• Theoretical way: figuring out the MLE before plugging the realization of X1, . . . , Xn into the MLE

• Numerical way: R function optim()

Example Lec4.1

• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi
(x | θ) = (2πσ2)−1/2 exp

{
− (x−µ)2

2σ2

}
,

x ∈ R, with unknown µ and known σ = 1. The MLE of µ is µ̂ML = X̄ = n−1 ∑n
i=1 Xi.

– If the realization of the sample is 1, . . . , 10, find the ML estimate of µ.

Ans:
sample = 1:10
ell = function(mu){

n = length(sample)
sigma = 1 # known
-n/2*log(2*pi*sigmaˆ2) - sum((sample - mu)ˆ2)/(2*sigmaˆ2)

}
optim(par = 0,

lower = -Inf, upper = Inf,
fn=ell, method="L-BFGS-B",
control=list(fnscale=-1))$par
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• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi
(x | θ) = (2πσ2)−1/2 exp

{
− (x−µ)2

2σ2

}
,

x ∈ R, with known µ = 5 and unknown σ > 0. The MLE of σ is σ̂ML =
√

n−1 ∑n
i=1(Xi − µ)2.

– If the realization of the sample is 1, . . . , 10, find the ML estimate of σ.

Ans:
sample = 1:10
ell = function(sigma){

n = length(sample)
mu = 5 # known
-n/2*log(2*pi*sigmaˆ2) - sum((sample - mu)ˆ2)/(2*sigmaˆ2)

}
optim(par = 10,

lower = 0.00001, upper = Inf,
fn=ell, method="L-BFGS-B",
control=list(fnscale=-1))$par

• Suppose X1, . . . , Xn is an iid sample following pXi
(x | θ) = θx(1 − θ)1−x1{0,1}(x), θ ∈ [0, 1/2]. The

MLE of θ is θ̂ML = min{X̄, 1/2}.
– If the realization of the sample is 0, 1, 1, 0, 0, find the ML estimate of θ.

• Suppose X1, . . . , Xn is an iid sample following an exponential distribution, i.e., fX(x | β) =
β−1 exp(−x/β)1(0,∞)(x), β > 0. The MLE of β is β̂ML = X̄.

– If the realization of the sample is 1, . . . , 10, find the ML estimate of β.

• Suppose X1, . . . , Xn is an iid sample following a beta distribution, i.e., fX(x | θ) = θxθ−11[0,1](x), θ > 0.
The MLE of θ is θ̂ML = −n/

∑n
i=1 ln Xi.

– If the realization of the sample is 0.1, . . . , 0.9, find the ML estimate of θ.

• The simplest linear model (or linear regression) is a collection of independent random variables Y1, . . . , Yn

such that
Yi = βxi + εi, i = 1, . . . , n,

where x1, . . . , xn are nonrandomized, and ε1, . . . , εn
iid∼ fε(t) =

√
2π exp(−t2/2) (i.e., N (0, 1)). The

MLE of β is β̂ML =
∑

i xiYi/
∑

i x2
i .

– Suppose x-values are 1, . . . , 10. Correspondingly, observed Y -values are 2, . . . , 11. Find the ML
estimate of β. (Hint: create the likelihood by noting that Yi ∼ N (βxi, 1).)

3


	Framework of statistical inference/learning
	Point estimation
	Maximum Likelihood (ML) Estimator (MLE)
	How to locate the ML estimator (MLE) constrained in \Theta?
	How to locate the ML estimate constrained in \Theta?
	Example Lec4.1

