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Bias
• Bias of θ̂: Bias(θ̂) = E(θ̂) − θ

• Unbiasedness: E(θ̂) = θ ⇔ θ̂ is an unbiased estimator of θ

Mean squared error (MSE)
• MSE(θ̂) = E(θ̂ − θ)2 = Bias2(θ̂) + var(θ̂)

– The lower the better
– MSE(θ̂) = var(θ̂) for unbiased θ̂

Numerically approximate MSE: using the (nonparametric) bootstrap
• Implementation

1. Suppose you observe x1, . . . , xn for an iid sample of size n.
2. Set a seed to make your result reproducible.
3. For b in 1 : B, do steps a–b.

a. Generate a bootstrap sample x
(b)
1 , . . . , x

(b)
n by drawing a sample of size n with replacement

from {x1, . . . , xn}.
b. Generate a new estimate θ̂(b) from x

(b)
1 , . . . , x

(b)
n .

4. MSE(θ̂) ≈ B−1 ∑B
b=1(θ̂(b) − θ)2.

• A similar question: how to numerically approximate var(θ̂)?

Example Lec5.1

• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi
(x | θ) = (2πσ2)−1/2 exp

{
− (x−µ)2

2σ2

}
,

x ∈ R, with unknown µ and known σ = 1. The MLE of µ is µ̂ML = X̄ = n−1 ∑n
i=1 Xi.

– Observing the sample 1, . . . , 10, numerically check the MSE of µ̂ML for µ = 5.

• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi(x | θ) = (2πσ2)−1/2 exp
{

− (x−µ)2

2σ2

}
,

x ∈ R, with known µ = 5 and unknown σ > 0. The MLE of σ is σ̂ML =
√

n−1 ∑n
i=1(Xi − µ)2.

– Observing the sample 1, . . . , 10, numerically check the MSE of σ̂ML for σ = 1.

• Suppose X1, . . . , Xn is an iid sample following pXi
(x | θ) = θx(1 − θ)1−x1{0,1}(x), θ ∈ [0, 1/2]. The

MLE of θ is θ̂ML = min{X̄, 1/2}.
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– Observing the sample 0, 1, 1, 1, 0, numerically check the MSE of θ̂ML for θ = .5.

• Suppose X1, . . . , Xn is an iid sample following an exponential distribution, i.e., fX(x | β) =
β−1 exp(−x/β)1(0,∞)(x), β > 0. The MLE of β is β̂ML = X̄.

– Observing the sample 1, . . . , 10, numerically check the MSE of β̂ML for β = 5.5.

• Suppose X1, . . . , Xn is an iid sample following a beta distribution, i.e., fX(x | θ) = θxθ−11[0,1](x), θ > 0.
The MLE of θ is θ̂ML = −n/

∑n
i=1 ln Xi.

– Observing the sample 1, . . . , 10, numerically check the MSE of θ̂ML for θ = .5.

Cramér-Rao lower bound (CRLB)
• Score/gradient: the derivative of the log-likelihood function (with respect to θ); denoted by ℓ′(θ).

• Hessian: the second-order derivative of the log-likelihood function (with respect to θ); denoted by ℓ′′(θ).

• Fisher information In(θ) = var{ℓ′(θ)} = E[{ℓ′(θ)}2] = −E{ℓ′′(θ)}

– In practice, θ is unknown ⇒ In(θ) is unknown and can be approximated by −ℓ′′(θ̂ML) (the observed
Fisher information)

– −ℓ′′(θ̂ML) may be approximated by optim()$hessian

• Under certain conditions, for any unbiased estimator θ̂ (i.e., E(θ̂) = θ), var(θ̂) ≥ I−1
n (θ) (CRLB for

unbiased estimators of θ)

• Efficiency: For an UNBIASED estimator of θ, say θ̂, the efficiency of θ̂ is the ratio of the CRLB to
var(θ̂), i.e., I−1

n (θ)/var(θ̂) (typically capped by 1).
– The higher efficiency the better.
– θ̂ is an efficient estimator of θ ⇐⇒ E(θ̂) = θ and its efficiency = 1.

Example Lec5.2

• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi
(x | θ) = (2πσ2)−1/2 exp

{
− (x−µ)2

2σ2

}
,

x ∈ R, with unknown µ and known σ = 1.
– Observing the sample 1, . . . , 10, numerically give the CRLB of unbiased estimator of µ.

• Suppose X1, . . . , Xn is an iid sample following N (µ, σ2), i.e., fXi
(x | θ) = (2πσ2)−1/2 exp

{
− (x−µ)2

2σ2

}
,

x ∈ R, with known µ = 5 and unknown σ > 0.
– Observing the sample 1, . . . , 10, numerically give the CRLB of unbiased estimator of σ.

• Suppose X1, . . . , Xn is an iid sample following pXi
(x | θ) = θx(1 − θ)1−x1{0,1}(x), θ ∈ [0, 1/2].

– Observing the sample 0, 1, 1, 1, 0, numerically give the CRLB of unbiased estimator of θ.

• Suppose X1, . . . , Xn is an iid sample following an exponential distribution, i.e., fX(x | β) =
β−1 exp(−x/β)1(0,∞)(x), β > 0.

– Observing the sample 1, . . . , 10, numerically give the CRLB of unbiased estimator of β.

• Suppose X1, . . . , Xn is an iid sample following a beta distribution, i.e., fX(x | θ) = θxθ−11[0,1](x),
θ > 0.
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– Observing the sample 1, . . . , 10, numerically give the CRLB of unbiased estimator of θ.
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