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Bias
« Bias of 0: Bias(0) = E(0) — 0
=40

« Unbiasedness: E(f) & 0 is an unbiased estimator of ¢

Mean squared error (MSE)

« MSE() = E(d — 0)? = Bias*(f) + var(0)
— The lower the better )
— MSE(#) = var(f) for unbiased 6

Numerically approximate MSE: using the (nonparametric) bootstrap

e Implementation
1. Suppose you observe z1, ..., x, for an iid sample of size n.
2. Set a seed to make your result reproducible.
3. For bin 1: B, do steps a—b.
a. Generate a bootstrap sample xgb), e ,xflb) by drawing a sample of size n with replacement
from {x1,...,2,}.
b. Generate a new estimate () from x(lb), L. ,x%b).
4. MSE(0) ~ B~ S0, (6™ — )2,
e A similar question: how to numerically approximate var(é)?

Example Lec5.1

+ Suppose Xi,..., X, is an iid sample following N (u, 0?), i.e., fx,(z | 0) = (2r0?) /2 exp {—%},

z € R, with unknown p and known ¢ = 1. The MLE of p is i, = X =n"1 Y1 | X.
— Observing the sample 1, ..., 10, numerically check the MSE of jiy, for p = 5.

« Suppose Xi,..., X, is an iid sample following N (u,c?), i.e., fx,(z | 0) = (2m0?) "1 /2 exp {—%},

z € R, with known g = 5 and unknown o > 0. The MLE of ¢ is ém1, = /n 1> (X; — p)2.
— Observing the sample 1, ..., 10, numerically check the MSE of &y, for o = 1.

+ Suppose X1, ..., X, is an iid sample following px, (z | ) = 6"(1 — 6)'"*113(x), 0 € [0,1/2]. The
MLE of 6 is Oy, = min{X, 1/2}.
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— Observing the sample 0,1,1,1,0, numerically check the MSE of Onp, for 0 = 5.

Suppose Xi,...,X, is an iid sample following an exponential distribution, i.e., fx(z | ) =
Bt exp(—x/B)1(,00)(2), 8> 0. The MLE of f3 is Bur, = X.
— Observing the sample 1, ..., 10, numerically check the MSE of BML for 8 =5.5.

Suppose X7, ..., X, is an iid sample following a beta distribution, i.e., fx(z | 8) = 919’11[0,1] (z), 6 > 0.
The MLE of 6 is fyr, = —n/ >, In X;.
— Observing the sample 1, ..., 10, numerically check the MSE of Oy, for 6 = 5.

Cramér-Rao lower bound (CRLB)

Score/gradient: the derivative of the log-likelihood function (with respect to #); denoted by ¢'(6).
Hessian: the second-order derivative of the log-likelihood function (with respect to 6); denoted by ¢ (6).
Fisher information I,,(0) = var{¢'(6)} = E[{¢'(0)}*] = —E{¢"(9)}

— In practice, 6 is unknown = I,,(0) is unknown and can be approximated by —¢” (Gyr,) (the observed
Fisher information)
— —¢"(6u1,) may be approximated by optim()$hessian

Under certain conditions, for any unbiased estimator § (i.e., E(0) = ), var(d) > I, *(#) (CRLB for
unbiased estimators of 6)

Efficiency: For an UNBIASED estimator of 6, say 0, the efficiency of 0 is the ratio of the CRLB to
var(0), i.e., I, 1(0) /var(f) (typically capped by 1).

— The higher efficiency the better.

— # is an efficient estimator of § <= E(f) = 6 and its efficiency = 1.

Example Lec5.2

Suppose X1, ..., X, is an iid sample following N (u, 0?), i.e., fx,(z | 0) = (270?)~ /2 exp {—%},
z € R, with unknown g and known o = 1.
— Observing the sample 1, ..., 10, numerically give the CRLB of unbiased estimator of u.

Suppose X1, ..., X, is an iid sample following N'(u, 0?), i.e., fx, (x| 0) = (2no?)~ /2 exp {—%},
x € R, with known g = 5 and unknown o > 0.
— Observing the sample 1, ..., 10, numerically give the CRLB of unbiased estimator of o.

Suppose X1,..., X, is an iid sample following px, (z | 6) = 0*(1 — ) ~"14 13 (x), 0 € [0,1/2].
— Observing the sample 0,1,1,1,0, numerically give the CRLB of unbiased estimator of 6.

Suppose Xi,...,X, is an iid sample following an exponential distribution, i.e., fx(z | ) =

Bt exp(—z/B)1(,00)(2), B> 0.
— Observing the sample 1, ..., 10, numerically give the CRLB of unbiased estimator of 5.

Suppose Xi,...,X,, is an iid sample following a beta distribution, i.e., fx(z | ) = 9309’11[0,1] (z),
6> 0.



— Observing the sample 1, ..., 10, numerically give the CRLB of unbiased estimator of 6.
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