PH 716 Applied Survival Analysis
 Part O: R basics

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Jan/22 09:47:54

Syllabus

Contact

- Instructor: Zhiyang (Gee) Zhou, PhD, Asst. Prof. (Biostatistics)
- Email: zhou67@uwm.edu
- Homepage: zhiyanggeezhou.github.io

Timeline

- Lectures
- Mon/Wed 12:45-14:00
- Office Hour
- TBD
- Assessments
- 4 or 5 Assignments
- Midterm
- Final project

Grading

- Assignments (30\%)
- Digital copies submitted
- Attaching both outputs and source codes (if applicable)
- Including necessary interpretation
- Organized in a clear and readable way
- Accepting NO late submission
- Midterm (35\%)
- Open-book
- In-person NOT later than Mar. 13, 2024
- Final project (35\%)
- Individual report analyzing recently collected data
- See the guideline posted at Canvas

Materials

- Reading list (recommended but not required)
- [DM] D. F. Moore. (2016). Applied Survival Analysis Using R. Switzerland: Springer.
* Accessible via UWM library http://ebookcentral.proquest.com/lib/uwm/detail.action?docID $=4526865$
- [KM] J. P. Klein \& M. L. Moeschberger. (2003). Survival analysis : techniques for censored and truncated data, 2nd Ed. New York: Springer.
- D. Salsburg (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. New York: WH Freeman.
- Lecture notes and beyond
- zhiyanggeezhou.github.io
- Canvas

Outline

- Topics to be covered
-R basics
- Basic quantities of survival models
- Kaplan-Meier and Nelson-Altschuler(-Aalen-Fleming-Harrington) estimators
- Comparisons of several multivariate means
- Accelerated failure time model
- Principal component analysis
- Cox proportional hazards (CPH) model
- CPH model with time dependent covariates
- Model selection and interpretation
- Model diagnostics
- Competing risks
- and so forth

R basics

- Installation
- download and install BASE R from https://cran.r-project.org
- download and install Rstudio from https://www.rstudio.com
- download and install packages via Rstudio
- Working directory
- When you ask R to open a certain file, it will look in the working directory for this file.
- When you tell R to save a data file or figure, it will save it in the working directory.

```
getwd()
mainDir <- "c:/"
subDir <- "stat3690"
dir.create(file.path(mainDir, subDir), showWarnings = FALSE)
setwd(file.path(mainDir, subDir))
```

- Packages
- installation: install.packages()
- loading: library()

```
install.packages('nlme')
```

library (nlme)

- Help manual: help(), ?, google, stackoverflow, etc.
- R is free but not cheap
- Open-source
- Citing packages
- NO quality control
- Requiring statistical sophistication
- Time-consuming to become a master
- References for the fusion of R and statistical methds
- G. James, D. Witten, T. Hastie and R. Tibshirani (2023) An Introduction to Statistical Learning: with Applications in R, 2nd Ed.
- M. L. Rizzo (2019) Statistical Computing with R, 2nd Ed.
- O. Jones, R. Maillardet, A. Robinson (2014) Introduction to Scientific Programming and Simulation Using R, 2nd Ed.
- Courses online
- https://www.pluralsight.com/search?q=R
-
- Data types: let $\operatorname{str}()$ or class() tell you
- numbers (integer, real, or complex)
- characters ("abc")
- logical (TRUE or FALSE)
- date \& time
- factor (commonly encountered in this course)
- NA (different from Inf, " '', $0, \mathrm{NaN}$ etc.)
- Data structures: let $\operatorname{str}()$ or class() tell you
- vector: an ordered collection of the same data type
- matrix: two-dimensional collection of the same data type
- array: more than two dimensional collection of the same data type
- data frame: collection of vectors of same length but of arbitrary data types
- list: collection of arbitrary objects
- Data input and output
- create
* vector: c()$, \operatorname{seq}(), \operatorname{rep}()$
* matrix: matrix (), cbind(), rbind()
* data frame
- output: write.table(), write.csv(), write.xlsx()
- import: read.table(), read.csv(), read.xlsx()
* header: whether or not assume variable names in first row
* stringsAsFactors: whether or not convert character string to factors
$-\operatorname{scan}()$: a more general way to input data
- save.image() and load(): save and reload workspace
- source(): run R script
- Parenthesis in R
- paenthesis () to enclose inputs for functions
- square brackets [], [[] for indexing
- braces $\}$ to enclose forloop or statements such as if or ifelse

```
# Create numeric vectors
v1 = c(1,2,3); v1
```

```
v2 = seq(4,6,by=0.5); v2
v3 = c(v1,v2); v3
v4 = rep(pi,5); v4
v5 = rep(v1,2); v5
v6 = rep(v1,each=2); v6
# Create Character vector
v7 <- c("one", "two", "three"); v7
# Select specific elements
v1[c(1,3)]
v7[2]
# Create matrices
m1 = matrix(-1:4, nrow=2); m1
m2 = matrix(-1:4, nrow=2, byrow=TRUE); m2
m3 = cbind(m1,m2); m3
(m4 = cbind(m1,m2))
# Create a data frame
e <- c(1,2,3,4)
f <- c("red", "white", "black", NA)
g <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(e,f,g)
names(mydata) <- c("ID", "Color", "Passed") # name variable
mydata
# Output
write.csv(mydata, file='mydata.csv', row.names=F)
# Import
(simple = read.csv('mydata.csv', header=TRUE, stringsAsFactors=TRUE))
class(simple)
class(simple[[1]])
class(simple[[2]])
class(simple[[3]])
(simple = read.csv('mydata.csv', header=FALSE, stringsAsFactors=FALSE))
class(simple[[3]])
# EXERCISE
# Create a matrix with 2 rows and 6 columns such that it contains the numbers 1,4,7,...,34.
# Make sure the numbers are increasing row-wise; ie, 4 should be in the second column.
# Use the seq() function to generate the numbers. Do NOT type them out by hand!
# ANSWER
matrix(seq(from=1, to=34, by=3), nrow=2)
```

- Elementary arithmetic operators
$-+,-,{ }^{*}, /,{ }^{\wedge}$
- log, exp, sin, cos, tan, sqrt
- FALSE and TRUE becoming 0 and 1, respectively
$-\operatorname{sum}(), \operatorname{mean}(), \operatorname{median}(), \min (), \max (), \operatorname{var}(), \operatorname{sd}()$, summary ()
- Matrix calculation
- element-wise multiplication: A * B
- matrix multiplication: A $\% * \%$ B
- singlar value decomposition: eigen(A)
- Loops: for() and while()
- Probabilities
- normal distribution: dnorm(), pnorm(), qnorm(), rnorm()
- uniform distribution: dunif(), punif(), qunif(), runif()
- multivariate normal distribution: dmvnorm(), rmvnorm()

```
# Generate two datasets
set.seed(100)
x = rnorm(250, mean=0, sd=1)
y = runif(250, -3, 3)
```

- Basic graphics
- strip chart, histogram, box plot, scatter plot
- Package ggplot2 (RECOMMENDED)

```
# Strip chart
stripchart(x)
# Histogram
hist(x)
# Box plot
boxplot(x)
# Side-bu-side box plot
xy = data.frame(normal=x, uniform=y)
boxplot(xy)
# Scatter Plot with fitted line
plot(x, y ,xlab="x", ylab = "y", main = "scatter plot between x and y")
abline(lm(y~x))
# EXERCISE
# Play with a data set called "Gasoline" included in the package "nlme".
# 1. How many variables are contained in this data set? What are they?
# 2. Generate a histogram of yield and calculate the five number summary for it.
# What is the shape of the histogram?
# 3. Generate side-by-side boxplots,
# comparing the temperature at which all the gasoline is vaporized (endpoint) to sample.
# Does it seem that the temperatures at which all the gasoline is vaporized differ by sample?
# 4. Generate a plot that illustrates the relationship between yield and endpoint.
# Describe the relationship between these two variables.
# 5. What if the plot created in Q4 were separated by sample?
# Generate a plot of yield v.s. endpoint, separated by sample.
# ANSWER
attach(nlme::Gasoline)
# 1. Six variables: yield, endpoint, sample, API, vapor, ASTM
# 2.
```

```
summary(yield)
hist(yield, nclass=50)
# 3.
boxplot(endpoint ~ Sample)
anova(lm(endpoint ~ Sample))
# 4.
plot(x=endpoint, y=yield, xlab="endpoint",ylab = "yield",
    main = "scatter plot between endpoint and yield")
abline(lm(yield~endpoint))
# }5
par(mfrow=c (2,5))
for (i in 1:10){
    plot(x=endpoint[Sample==i], y=yield[Sample==i], xlab='', ylab='', main=paste('Sample=', i))
    abline(lm(yield[Sample==i]~endpoint[Sample==i]))
}
# Do not forget to detach the dataset after using it.
detach(nlme::Gasoline)
```

