
PH 716 Applied Survival Analysis
Part O: R basics

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Jan/22 09:47:54

Syllabus
Contact

• Instructor: Zhiyang (Gee) Zhou, PhD, Asst. Prof. (Biostatistics)
– Email: zhou67@uwm.edu
– Homepage: zhiyanggeezhou.github.io

Timeline
• Lectures

– Mon/Wed 12:45–14:00
• Office Hour

– TBD
• Assessments

– 4 or 5 Assignments
– Midterm
– Final project

Grading
• Assignments (30%)

– Digital copies submitted
– Attaching both outputs and source codes (if applicable)
– Including necessary interpretation
– Organized in a clear and readable way
– Accepting NO late submission

• Midterm (35%)
– Open-book
– In-person NOT later than Mar. 13, 2024

• Final project (35%)
– Individual report analyzing recently collected data
– See the guideline posted at Canvas

Materials
• Reading list (recommended but not required)

– [DM] D. F. Moore. (2016). Applied Survival Analysis Using R. Switzerland: Springer.

1

mailto:zhou67@uwm.edu
https://zhiyanggeezhou.github.io/
mailto:zhou67@uwm.edu
https://zhiyanggeezhou.github.io/

∗ Accessible via UWM library http://ebookcentral.proquest.com/lib/uwm/detail.action?docID
=4526865

– [KM] J. P. Klein & M. L. Moeschberger. (2003). Survival analysis : techniques for censored and
truncated data, 2nd Ed. New York: Springer.

– D. Salsburg (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth
Century. New York: WH Freeman.

• Lecture notes and beyond
– zhiyanggeezhou.github.io
– Canvas

Outline
• Topics to be covered

– R basics
– Basic quantities of survival models
– Kaplan-Meier and Nelson-Altschuler(-Aalen-Fleming-Harrington) estimators
– Comparisons of several multivariate means
– Accelerated failure time model
– Principal component analysis
– Cox proportional hazards (CPH) model
– CPH model with time dependent covariates
– Model selection and interpretation
– Model diagnostics
– Competing risks
– and so forth

R basics
• Installation

– download and install BASE R from https://cran.r-project.org
– download and install Rstudio from https://www.rstudio.com
– download and install packages via Rstudio

• Working directory
– When you ask R to open a certain file, it will look in the working directory for this file.
– When you tell R to save a data file or figure, it will save it in the working directory.

getwd()
mainDir <- "c:/"
subDir <- "stat3690"
dir.create(file.path(mainDir, subDir), showWarnings = FALSE)
setwd(file.path(mainDir, subDir))

• Packages
– installation: install.packages()
– loading: library()

install.packages('nlme')
library(nlme)

• Help manual: help(), ?, google, stackoverflow, etc.

• R is free but not cheap
– Open-source
– Citing packages

2

http://ebookcentral.proquest.com/lib/uwm/detail.action?docID=4526865
http://ebookcentral.proquest.com/lib/uwm/detail.action?docID=4526865
https://zhiyanggeezhou.github.io/
https://cran.r-project.org
https://www.rstudio.com

– NO quality control
– Requiring statistical sophistication
– Time-consuming to become a master

• References for the fusion of R and statistical methds
– G. James, D. Witten, T. Hastie and R. Tibshirani (2023) An Introduction to Statistical Learning:
with Applications in R, 2nd Ed.

– M. L. Rizzo (2019) Statistical Computing with R, 2nd Ed.
– O. Jones, R. Maillardet, A. Robinson (2014) Introduction to Scientific Programming and Simulation
Using R, 2nd Ed.

–
• Courses online

– https://www.pluralsight.com/search?q=R
–

• Data types: let str() or class() tell you
– numbers (integer, real, or complex)
– characters (“abc”)
– logical (TRUE or FALSE)
– date & time
– factor (commonly encountered in this course)
– NA (different from Inf, “ ’ ’, 0, NaN etc.)

• Data structures: let str() or class() tell you
– vector: an ordered collection of the same data type
– matrix: two-dimensional collection of the same data type
– array: more than two dimensional collection of the same data type
– data frame: collection of vectors of same length but of arbitrary data types
– list: collection of arbitrary objects

• Data input and output
– create

∗ vector: c(), seq(), rep()
∗ matrix: matrix(), cbind(), rbind()
∗ data frame

– output: write.table(), write.csv(), write.xlsx()
– import: read.table(), read.csv(), read.xlsx()

∗ header: whether or not assume variable names in first row
∗ stringsAsFactors: whether or not convert character string to factors

– scan(): a more general way to input data
– save.image() and load(): save and reload workspace
– source(): run R script

• Parenthesis in R
– paenthesis () to enclose inputs for functions
– square brackets [], [[]] for indexing
– braces {} to enclose forloop or statements such as if or ifelse

Create numeric vectors
v1 = c(1,2,3); v1

3

https://www.pluralsight.com/search?q=R

v2 = seq(4,6,by=0.5); v2
v3 = c(v1,v2); v3
v4 = rep(pi,5); v4
v5 = rep(v1,2); v5
v6 = rep(v1,each=2); v6
Create Character vector
v7 <- c("one", "two", "three"); v7
Select specific elements
v1[c(1,3)]
v7[2]

Create matrices
m1 = matrix(-1:4, nrow=2); m1
m2 = matrix(-1:4, nrow=2, byrow=TRUE); m2
m3 = cbind(m1,m2); m3
(m4 = cbind(m1,m2))

Create a data frame
e <- c(1,2,3,4)
f <- c("red", "white", "black", NA)
g <- c(TRUE,TRUE,TRUE,FALSE)
mydata <- data.frame(e,f,g)
names(mydata) <- c("ID", "Color", "Passed") # name variable
mydata

Output
write.csv(mydata, file='mydata.csv', row.names=F)

Import
(simple = read.csv('mydata.csv', header=TRUE, stringsAsFactors=TRUE))
class(simple)
class(simple[[1]])
class(simple[[2]])
class(simple[[3]])
(simple = read.csv('mydata.csv', header=FALSE, stringsAsFactors=FALSE))
class(simple[[3]])

EXERCISE
Create a matrix with 2 rows and 6 columns such that it contains the numbers 1,4,7,...,34.
Make sure the numbers are increasing row-wise; ie, 4 should be in the second column.
Use the seq() function to generate the numbers. Do NOT type them out by hand!

ANSWER
matrix(seq(from=1, to=34, by=3), nrow=2)

• Elementary arithmetic operators
– +, -, *, /, ˆ
– log, exp, sin, cos, tan, sqrt
– FALSE and TRUE becoming 0 and 1, respectively
– sum(), mean(), median(), min(), max(), var(), sd(), summary()

• Matrix calculation
– element-wise multiplication: A * B
– matrix multiplication: A %*% B
– singlar value decomposition: eigen(A)

4

• Loops: for() and while()

• Probabilities
– normal distribution: dnorm(), pnorm(), qnorm(), rnorm()
– uniform distribution: dunif(), punif(), qunif(), runif()
– multivariate normal distribution: dmvnorm(), rmvnorm()

Generate two datasets
set.seed(100)
x = rnorm(250, mean=0, sd=1)
y = runif(250, -3, 3)

• Basic graphics
– strip chart, histogram, box plot, scatter plot
– Package ggplot2 (RECOMMENDED)

Strip chart
stripchart(x)

Histogram
hist(x)

Box plot
boxplot(x)

Side-bu-side box plot
xy = data.frame(normal=x, uniform=y)
boxplot(xy)

Scatter Plot with fitted line
plot(x, y ,xlab="x", ylab = "y", main = "scatter plot between x and y")
abline(lm(y~x))

EXERCISE
Play with a data set called "Gasoline" included in the package "nlme".
1. How many variables are contained in this data set? What are they?
2. Generate a histogram of yield and calculate the five number summary for it.
What is the shape of the histogram?
3. Generate side-by-side boxplots,
comparing the temperature at which all the gasoline is vaporized (endpoint) to sample.
Does it seem that the temperatures at which all the gasoline is vaporized differ by sample?
4. Generate a plot that illustrates the relationship between yield and endpoint.
Describe the relationship between these two variables.
5. What if the plot created in Q4 were separated by sample?
Generate a plot of yield v.s. endpoint, separated by sample.

ANSWER
attach(nlme::Gasoline)
1. Six variables: yield, endpoint, sample, API, vapor, ASTM
2.

5

summary(yield)
hist(yield, nclass=50)
3.
boxplot(endpoint ~ Sample)
anova(lm(endpoint ~ Sample))
4.
plot(x=endpoint, y=yield, xlab="endpoint",ylab = "yield",

main = "scatter plot between endpoint and yield")
abline(lm(yield~endpoint))
5.
par(mfrow=c(2,5))
for (i in 1:10){

plot(x=endpoint[Sample==i], y=yield[Sample==i], xlab='', ylab='', main=paste('Sample=', i))
abline(lm(yield[Sample==i]~endpoint[Sample==i]))

}
Do not forget to detach the dataset after using it.
detach(nlme::Gasoline)

6

	Syllabus
	Contact
	Timeline
	Grading
	Materials
	Outline

	R basics

