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Recall Ex. 2.2

data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
survminer::ggsurvplot(

survival::survfit(survival::Surv(time, status)~trt, data=data.ex22, conf.type="log-log"),
xlab="Time",
conf.int = T,
conf.int.style="step",
censor=F,
risk.table = F,
cumevents = F,
tables.height = 0.15

)

Recall the hypothesis testing (from the perspective of binary classification)
• Make a decision between the null hypothesis H0 and the alternative one H1

• Potential outcomes

– True positive (TP) = H0 correctly rejected
– False positive (FP, i.e., type I error) = H0 incorrectly rejected
– True negative (TN) = H0 is correctly accepted
– False negative (FN, i.e., type II error) = H0 incorrectly accepted
– E.g., H0 : healthy vs H1 : sick

∗ TP: sick people identified as sick
∗ FP: healthy people identified as sick
∗ TN: healthy people identified as healthy
∗ FN: sick people identified as healthy

Accept H0 Reject H0

H0 is true True negative (TN) False positive (FP, i.e., type I error)
H0 is false False negative (FN, i.e., type II error) True positive (TP)

• Evaluating the error rate
– Misclassification rate = Pr(FP) + Pr(FN)
– False discovery rate (FDR) = Pr(FP)/{Pr(FP) + Pr(TP)}

∗ controlling for sequential/simultaneous testing
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– True positive rate (TPR, i.e., sensitivity) = Pr(TP)/{Pr(TP) + Pr(FN)}
– False positive rate (FPR) = Pr(FP)/{Pr(FP) + Pr(FN)}
– Receiver operating characteristic curve (ROC curve): plot of TPR vs FPR

∗ Area under the ROC curve (AUC)
– True negative rate (TNR, i.e., specificity) = Pr(TN)/{Pr(TN) + Pr(FP)}

• The (optimal) hypothesis testing is a strategy minimizing Pr(FN) subject to capped Pr(FP), i.e.,

minimizePr(type II error) subject to Pr(type I error) ≤ α

– α is the significance level

Assumptions
• Independent and non-informative right-censoring
• All Ti are independent of each other
• Ti | i ∈ group k iid∼ λk(t) for each k

Hypotheses to be tested
• Null hypothesis H0 : λ1(t) = λ2(t) = λ(t) for all t
• Alternative hypothesis H1 could be:

– One-sided H1 : λ1(t) ≥ λ2(t) for all t and λ1(t) > λ2(t) for some t
– One-sided H1 : λ1(t) ≤ λ2(t) for all t and λ1(t) < λ2(t) for some t
– Two-sided H1 : λ1(t) 6= λ2(t) for some t

Two-sample log-rank test
• Distinct observed event times across the POOLED sample are t1 < · · · < tnD

– At time tj , there are dkj events in group k, k = 1, 2, and dj = d1j + d2j
– Just prior to tj , there are rkj at risk in group k and rj = r1j + r2j

• Test statistic
– Uk/

√
V ≈ N(0, 1) under H0, k = 1, 2

∗ Uk =
∑nD

j=1 rkj(dkj/rkj − dj/rj) = rkj{λ̂1(tj)− λ̂(tj)}
· λ̂1(tj): estimated hazard rate at tj for group k
· λ̂(tj): estimated hazard rate at tj for pooled population
· dkj = rkj λ̂1(tj): observed number of events from sample k at time tj
· rkj λ̂(tj): expected number of events from sample k at time tj under H0

∗ V = var(Uk) =
∑nD

j=1
djr1jr2j(rj−dj)

r2
j

(rj−1)
∗ U1 = U2

– The log-rank test is rank-based; one could construct the test statistic using only the order of
observed event times alone.

• Rejection region
– 2-sided: |Uk/

√
V | > z1−α/2 or equiv. U2

k/V > χ2
1,1−α

∗ z1−α/2 is the 1− α/2 quantile of N(0, 1)
∗ χ2

1,1−α is the 1− α quantile of χ2(1)
– 1-sided (H1 : λ1(t) ≥ λ2(t) for all t and λ1(t) > λ2(t) for some t): U1/

√
V > z1−α

– 1-sided (H1 : λ1(t) ≤ λ2(t) for all t and λ1(t) < λ2(t) for some t): −U1/
√
V > z1−α

• p-value
– 2-sided: p = 2{1− Φ(|Uk/

√
V |)}

∗ Φ(·) is the cdf of N(0, 1)
– 1-sided (H1 : λ1(t) ≥ λ2(t) for all t and λ1(t) > λ2(t) for some t): p = {1− Φ(U1/

√
V )}

– 1-sided (H1 : λ1(t) ≤ λ2(t) for all t and λ1(t) < λ2(t) for some t): p = {1− Φ(−U1/
√
V )}
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Ex. 3.1. Revisit the PBC data

data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
# For 2-sided H1 only
survival::survdiff(

formula = survival::Surv(time, status)~trt, data=data.ex22
)
survminer::surv_pvalue(

fit = survival::survfit(formula = survival::Surv(time, status)~trt, data=data.ex22),
method = 'log-rank'

)
# For 2-sided or 1-sided H1
nph::logrank.test(

time = data.ex22$time,
event = data.ex22$status,
group = data.ex22$trt,
alternative = 'two.sided' # 'two.sided','less','greater'

)$test

• Demo report of testing results (covering necessary components: hypotheses, the name of method, the
p-value/rejection region, the significance level, and the conclusion):

– “Testing hypotheses H0 : __ vs. H1 : __ , we carried on the __ test.”
∗ “The p-value is __ . So, at the __ level, there was/wasn’t a strong statistical evidence against
H0, i.e., we believed that __ .”

∗ OR “The value of test statistic is T = __ . Given the level __ rejection region T > __ ,
there was/wasn’t a strong statistical evidence against H0, i.e., we believed that __ .”

Comparing >2 survival curves
• Hypotheses to be tested

– Null hypothesis H0 : λ1(t) = · · · = λK(t) = λ(t) for all t
– Alternative hypothesis H1 : λk1(t) 6= λk2(t) for certain t and certain 2-tuple (k1, k2)

• Ex. 3.2. (Bladder Cancer Recurrences) A dataset on recurrences of bladder cancer. It contains three
treatment arms for 118 subjects.

data.ex32 = survival::bladder1[
complete.cases(survival::bladder1[,c('id', 'treatment', 'start', 'stop', 'status')]),
c('id', 'treatment', 'start', 'stop', 'status')

]
data.ex32$status = 1*(data.ex32$status %in% c(1,2,3)) # merging status 1, 2,3
data.ex32$time = data.ex32$stop - data.ex32$start
survival::survdiff(

formula = survival::Surv(time, status)~treatment, data=data.ex32
)
# Or
survminer::surv_pvalue(

fit = survival::survfit(formula = survival::Surv(time, status)~treatment, data=data.ex32),
method = 'log-rank'

)

Testing for trend
• Hypotheses to be tested

– Null hypothesis H0 : λ1(t) = · · · = λK(t) = λ(t) for all t, K > 2
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– Alternative hypothesis H1 : λ1(t) ≥ · · · ≥ λK(t) or λ1(t) ≤ · · · ≤ λK(t), with at least one strict
inequality

• Ex. 3.3. Revisit the data of bladder cancer recurrences
data.ex33 = survival::bladder1[

complete.cases(survival::bladder1[,c('id', 'treatment', 'start', 'stop', 'status')]),
c('id', 'treatment', 'start', 'stop', 'status')

]
data.ex33$status = 1*(data.ex33$status %in% c(1,2,3)) # merging status 1, 2,3
data.ex33$time = data.ex33$stop - data.ex33$start
data.ex33$treatment = factor(data.ex33$treatment, levels = c("placebo","pyridoxine","thiotepa"))
survminer::surv_pvalue(

fit = survival::survfit(formula = survival::Surv(time, status)~treatment, data=data.ex33),
method = 'log-rank',
test.for.trend = T

)
# The order of treatments matters
data.ex33$treatment = factor(data.ex33$treatment, levels = c("placebo","thiotepa","pyridoxine"))
survminer::surv_pvalue(

fit = survival::survfit(survival::Surv(time, status)~treatment, data=data.ex33),
method = 'log-rank',
test.for.trend = T

)
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