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Assumptions for Cox proportional hazards (PH) model
• Observed T̃i = t̃i and ∆i = δi (event indicator)

• Ti are independent across i, given xi1, . . . , xip
• The independent and non-informative censoring

• λTi(t) = λ(t | xi1, . . . , xip) = λ0(t) exp(
∑p
j=1 xijβj), or equiv. lnλTi(t) = lnλ0(t) +

∑p
j=1 xijβj

– λ0(t) (the baseline hazard): obtained when all covariates are zeros and left unspecified
∗ A semi-parametric generalized linear model: nonparmetric baseline hazard + paramatric

proportion
– Proportional hazards: the HR between any two individuals, say λTi1

(t)/λTi2
(t) =

exp(
∑p
j=1 xi1jβj −

∑p
j=1 xi2jβj), is constant over time

– No intercept β0
– Interpretation of βj : exp(βj) is the HR associated with one-unit change of the jth covariate, fixing

everything else

Weibull regression as a special case of PH models

• Recall the Weibull regression: lnTi = β0 +
∑p
j=1 xijβj + σεi with εi

iid∼ Fεi
(ε) = 1− exp(− exp ε)

– STi
(t) = exp[−{t/ exp(β0 +

∑p
j=1 xijβj)}1/σ]⇒ λTi

(t) = (1/σ)t1/σ−1 exp{(−β0−
∑p
j=1 xijβj)/σ}

• λTi(t) = λ0(t) exp(
∑p
j=1 xijβ

∗
j ) if λ0(t) = (1/σ)t1/σ−1 exp(−β0/σ) and β∗j = −βj/σ, j = 1, . . . , p

• The only continuous-time model that is both a PH and an AFT model

Partial likelihood (assuming no tied failure time)
• The observed-data likelihood L(β, λ0) =

∏
i λTi

(t̃i)δiSTi
(t̃i) relying on both β = [β1, . . . , βj ]> and

unspecified λ0(·)

• Further assumptions

– K and only K distinct, ordered failure times, say t1 < · · · < tK
– No tied failure time: for each k, there is one and only one individual, say subject ik, who fails at tk
– Risk set R(t) = {i : T̃i ≥ t}: the set of individuals who are known to survive just prior to time t

• Rephrase L(β, λ0):

L(β, λ0) =
n∏
i=1

λTi
(t̃i)δiSTi

(t̃i) =
n∏
i=1

{
λTi

(t̃i)∑
`∈R(t̃i) λT`

(t̃i)

}δi

×

 ∑
`∈R(t̃i)

λT`
(t̃i)


δi

× STi
(t̃i)
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• Take the partial likelihood (i.e., the first term of the above L(β, λ0))

pL(β) =
n∏
i=1

{
λTi

(t̃i)∑
k∈R(t̃i) λTk

(t̃i)

}δi

=
n∏
i=1

{
exp(

∑p
j=1 xijβj)∑

`∈R(t̃i) exp(
∑p
j=1 x`jβj)

}δi

=
K∏
k=1

exp(
∑p
j=1 xikjβj)∑

`∈R(tk) exp(
∑p
j=1 x`jβj)

as a surrogate of L(β, λ0) in estimating β

– Cox (1972) argued that pL(β) contained almost all the information about β
– Extensive evidence, both theoretical and numerical, supported this argument in the past few

decades
–

exp(
∑p

j=1
xikjβj)∑

`∈R(tk)
exp(
∑p

j=1
x`jβj)

: the probability of selecting a particular person (here subject ik) from the

risk set at time tk
• Log-partial likelihood

p`(β) = ln pL(β) =
K∑
k=1


p∑
j=1

xkjβj − ln
∑

`∈R(tk)

exp

 p∑
j=1

x`jβj


Ex. 5.1 The calculation of partial likelihood

i t̃i δi xi

1 9 1 4
2 8 0 5
3 6 1 7
4 10 1 3

• Follow the following definition (without reordering failure times) and fill in the table

pL(β) =
n∏
i=1

{
exp(

∑p
j=1 xijβj)∑

`∈R(t̃i) exp(
∑p
j=1 x`jβj)

}δi

i t̃i δi xi R(t̃i)
{

exp(xiβ)∑
`∈R(t̃i)

exp(x`β)

}δi

1 9 1 4
2 8 0 5
3 6 1 7
4 10 1 3

Ex. 5.2 The calculation of partial likelihood: comparison of two groups
• Covariate xi indicating the group label

i t̃i δi xi R(t̃i) exp(xiβ)∑
`∈R(t̃i)

exp(x`β)

1 4 0 0
2 7 1 0
3 8 0 0
4 9 1 0
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i t̃i δi xi R(t̃i) exp(xiβ)∑
`∈R(t̃i)

exp(x`β)

5 10 0 0
6 3 1 1
7 5 1 1
8 5 0 1
9 6 1 1
10 8 0 1

library(survival)
data = data.frame(

tte = c(4,7,8,9,10,3,5,5,6,8),
delta = c(0,1,0,1,0,1,1,0,1,0),
x = c(0,0,0,0,0,1,1,1,1,1)

)
fit = coxph(Surv(tte,delta)~x, data = data)
summary(fit)

• exp(β) is the hazard ratio of group = 1 against group = 0, fixing covariates other than (if any). It implies
that one jumps from group = 0 to group = 1 the hazard would be inflated by (exp(β)− 1)× 100%.

• Is there any difference between the survival of the two groups? There are at least four p-values. Which
one shall we refer to?

• What are meanings of other digits in the output?

• What if there are more covariates?

Ex. 5.3. Leukemia data (with tied event/failure times)

survival::leukemia

Partial likelihood (Cox’s modification)
• Assumptions

– K and only K distinct, ordered failure times, say t1 < · · · < tK
– dk failures at time tk: there are dk individuals, say subject ik,1, . . . , ik,dk

, who fail at tk
• Accordingly

pL(β) =
K∏
k=1

∏
i∈{ik,1,...,ik,dk

} exp(
∑
j xijβj)∑

D(dk)⊂R(tk)
∏
i∈D(dk) exp(

∑
j xijβj)

– D(dk) ⊂ R(tk): a subset of R(tk) containing dk subjects, i.e., a set of dk individuals who are at
risk at tk

• Labeled as exact by survival::coxph

Partial likelihood (Breslow’s approximation)
• Keeping the assumptions for the Cox’s modification

• Substituting {
∑
`∈R(tk) exp(

∑p
j=1 x`jβj)}dk for the denominator of the Cox’s modification

pL(β) =
K∏
k=1

∏
i∈{ik,1,...,ik,dk

} exp(
∑
j xijβj)

{
∑
`∈R(tk) exp(

∑p
j=1 x`jβj)}dk

• Default tie-handling method in SAS
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Partial likelihood (Efron’s approximation)
• Keeping the assumptions for the Cox’s modification

• Substitute
∏dk

m=1{
∑
`∈R(tk) exp(

∑p
j=1 x`jβj)−

m−1
dk

∑
i∈{ik,1,...,ik,dk

} exp(
∑
j xijβj)} for the denomina-

tor of Cox’s modification

pL(β) =
K∏
k=1

∏
i∈{ik,1,...,ik,dk

} exp(
∑
j xijβj)∏dk

m=1{
∑
`∈R(tk) exp(

∑p
j=1 x`jβj)−

m−1
dk

∑
i∈{ik,1,...,ik,dk

} exp(
∑
j xijβj)}

• Default tie-handling method by survival::coxph

Summary of handling ties
• With no ties, all approximation options give exactly the same results

• With only a few ties, all approximations yield pretty much the same results

• With many ties (relative to the number at risk), both of Breslow’s and Efron’s approximations yield
coefficients β that are biased toward 0.

• Computing time of Cox’s method is substantially longer than that of approximate methods. But it is
not a big issue with today’s hardwares.

• The Efron’s approximation almost always works better than the Breslow’s method, without consuming
more time.

Revisit Ex. 5.3. Leukemia data (with tied event/failure times)

library(survival)
data = survival::leukemia
fit1 = coxph(Surv(time,status)~x, data = data)
fit2 = coxph(Surv(time,status)~x, data = data, ties = 'efron')
fit3 = coxph(Surv(time,status)~x, data = data, ties = 'breslow')
fit4 = coxph(Surv(time,status)~x, data = data, ties = 'exact')
c(coef(fit1), coef(fit2), coef(fit3), coef(fit4))

CIs and hypothesis tests for HRs
• Suppose the HR of interest is the one associated with the one-unit increase of the jth covairate, i.e.,

exp(βj)

• var{exp(β̂j)} ≈ exp(2β̂j)var(β̂j) (delta method)

– Hence se(exp(β̂j)) ≈ exp(β̂j)se(β̂j)

• 95% CI for exp(βj)

– exp(β̂j)± Φ−1(.975)× se(exp(β̂j))
∗ Φ−1(.975) (≈ 1.96): the .975 quantile of N(0, 1)

– exp(β̂j ± Φ−1(.975)× se(β̂j)) (preferred; why?)

• Hypothesis test for H0 : exp(βj) = 1 (i.e., βj = 0) vs. H1 : otherwise.

– Wald test statistic: β̂j/se(β̂j) ≈ N(0, 1) under H0
∗ Equivalent to checking whether exp(β̂j ± Φ−1(.975)× se(β̂j)) covers 1

• LRT to compare two nested models
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– Model 1 nested to Model 2
∗ Model 1: λ(t | xi1, . . . , xip) = λ0(t) exp(

∑p
j=1 xijβj)

∗ Model 2: λ(t | xi1, . . . , xip, xi,q+1, . . . , xi,p+q) = λ0(t) exp(
∑p+q
j=1 xijβj)

– H0 : Model 1 is correct (i.e., βp+1 = · · · = βp+q = 0) vs. H1 : Model 2 is correct
– Test statistic: 2(lnLModel2 − lnLModel1) ≈ χ2(q) under H0

Ex. 5.4. Nursing home data
• Variables:

– ID: Patient ID
– lstay: Length of stay of a resident (in days)
– age: Age of a resident
– trt: Nursing home assignment (1: receive treatment, 0: control)
– gender: Gender (1:male, 0:female)
– marstat: Marital status (1: married, 0: not married)
– hlstat: Health status (2: second best, 5: worst)
– cens: Censoring indicator (1:censored, 0: discharged)

options(digits=4)
library(survival)
data = read.csv("NursingHome.csv")
data$event <- 1-data$cens
head(data)
data$trt = factor(data$trt) # not necessary because it is of two levels
data$gender = factor(data$gender) # not necessary because it is of two levels
data$marstat = factor(data$marstat) # not necessary because it is of two levels
data$hlstat = factor(data$hlstat) # necessary because it is of more than two levels

fit1 <- coxph(Surv(lstay,event) ~ trt + age + gender + marstat + hlstat, data=data)
summary(fit1)

# Testing if trt is necessary against the full model
fit2 <- coxph(Surv(lstay,event) ~ age + gender + marstat + hlstat, data=data)
anova(fit1, fit2)
summary(fit2)

# Testing if trt, age and marstat are necessary against the full model
fit3 <- coxph(Surv(lstay,event) ~ gender + hlstat, data=data)
anova(fit1, fit3)
summary(fit3)

Baseline cummulative hazard and survival function
• Have to maximize the likelihood L(β, λ0) instead of the partial likelihood pL(β)

– Assuming the cumulative baseline hazard Λ0(·) as piecewise constant between failure times, Breslow
(1972) proved that

∗ L(β, λ0) and pL(β) share the identical maximizer, say β̂, with respect to β
∗ The maximizer of L(β, λ0) with respect to λ0, say λ̂0, satisfies that

Λ̂0(t) =
∑
k:tk≤t

dk∑
`∈R(tk) exp(

∑p
j=1 x`j β̂j)

· Λ̂0(t): Breslow estimator of the baseline cumulative hazard rate, reducing to the NA
estimator (Lecture Note Part II) if all covariates are zeros
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· dk: # of events at tk
· R(tk): the risk set at tk

• ŜTi(t) = exp{−Λ̂0(t)}exp(
∑p

j=1
xij β̂j) = Ŝ0(t)exp(

∑p

j=1
xij β̂j)

– Ŝ0(t) = exp{−Λ̂0(t)}: estimated baseline survival function

Ex. 5.4. Revisit the nursing home data

options(digits=4)
library(survival)
data.ex54 = read.csv("NursingHome.csv")
data.ex54$event <- 1-data.ex54$cens
data.ex54$marstat = factor(data.ex54$marstat) # not necessary because it is of two levels
data.ex54$hlstat = factor(data.ex54$hlstat) # necessary because it is of more than two levels
fit.ex54 <- coxph(Surv(lstay,event) ~ marstat + hlstat, data=data.ex54)
## P.S. note the mandatory scaling of covariates in `survival::coxph`

# baseline hazard and baseline survival
baseline <- basehaz(fit.ex54, centered = FALSE)
names(baseline)[1] = 'cum.haz'
baseline$surv = exp(-baseline$cum.haz)
baseline

# Plot the survival function with given values of covariates
newdata.ex54 <- data.frame(

marstat = factor(c(0,0,1,1)),
hlstat = factor(c(2,5,2,5))

)
newdata.ex54
cox.predicted.survival <- survfit(fit.ex54, newdata=newdata.ex54)
plot(

cox.predicted.survival, lty=1:4, col=1:4, lwd=2,
xlab="Survival Time", ylab="Estimated Survival Probability"

)
legend(

"topright",
c(

"Not married, health status second best",
"Not married, health status worst",
"Married, health status second best",
"Married, health status worst"

),
lty=1:4, col=1:4, lwd=2

)

6


	Assumptions for Cox proportional hazards (PH) model
	Weibull regression as a special case of PH models
	Partial likelihood (assuming no tied failure time)
	Ex. 5.1 The calculation of partial likelihood
	Ex. 5.2 The calculation of partial likelihood: comparison of two groups
	Ex. 5.3. Leukemia data (with tied event/failure times)
	Partial likelihood (Cox's modification)
	Partial likelihood (Breslow's approximation)
	Partial likelihood (Efron's approximation)
	Summary of handling ties
	Revisit Ex. 5.3. Leukemia data (with tied event/failure times)
	CIs and hypothesis tests for HRs
	Ex. 5.4. Nursing home data
	Baseline cummulative hazard and survival function
	Ex. 5.4. Revisit the nursing home data

