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Assumptions for Cox proportional hazards (PH) model
e Observed i =t; and A; = J; (event indicator)
o T, are independent across ¢, given x;1,...,Tip
e The independent and non-informative censoring
o A, (t) = At | @i, ... mip) = Ao(t) exp(D-F_; 2458;), or equiv. In Aq, (t) = In Ao(t) + Z§=1 Zij3;

— Ao(t) (the baseline hazard): obtained when all covariates are zeros and left unspecified
x A semi-parametric generalized linear model: nonparmetric baseline hazard + paramatric
proportion
— Proportional hazards: the HR between any two individuals, say Az, (t)/Ar,(t) =

exp(z 1%y — Z§=1 Ziy;35), is constant over time
— No mtercept Bo
— Interpretation of 3;: exp(/;) is the HR associated with one-unit change of the jth covariate, fixing

everything else

Weibull regression as a special case of PH models

iid

o Recall the Weibull regression: InT; = Sy + Z] 1TiiB5 + og; with €; ~ F, () =1 — exp(—expe)
— Sr,(t) = exp[—{t/ exp(Bo + 2]y 2i;8)}/7] = A, () = (1))t~  exp{(=fo — 22]_, 7i;55) [0}

o A, (t) = Xo(t) exp( 5.’:1 x5 85) if Ao(t) = (1/0)t"/ =Y exp(—Py /o) and B;=-PBj/o,j=1,....p
e The only continuous-time model that is both a PH and an AFT model

Partial likelihood (assuming no tied failure time)

o The observed-data likelihood L(B, o) = [, Ar, (£:)% St,(£;) relying on both B = [B1,...,5;]" and
unspecified Ag(+)

e Further assumptions

— K and only K distinct, ordered failure times, say t; < --- < tx
— No tied failure time: for each &, there is one and only one individual, say subject iz, who fails at t
— Risk set R(t) = {i: T; > t}: the set of individuals who are known to survive just prior to time ¢

o Rephrase L(8, \o):
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o Take the partial likelihood (i.e., the first term of the above L(8, \y))
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u Ay () ' s eXP(Z —1 ZijBj) ' X eXP(Z —1 TiyjBj)
L - £ = = =
pL(B) H {EkeR(fi) Az (1) } H {Zeen(t ) exp(_y 74;;) } i 2rer ) P i B5)

as a surrogate of L(f, \g) in estimating 3

— Cox (1972) argued that pL(8) contained almost all the information about 3
— Extensive evidence, both theoretical and numerical, supported this argument in the past few

decades
- GLODSEURLY : the probability of selecting a particular person (here subject ix) from the
Zzgn(t ) p(Y 0 weiBi)’ p y gap p j A

risk set at time ¢

o Log-partial likelihood
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Ex. 5.1 The calculation of partial likelihood
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o Follow the following definition (without reordering failure times) and fill in the table

- exp( Z _1%ijB;) "
v =11 ]

i=1 ZéeR(t )eXP(Z] 1 %0585

d;
¥ 7 exp(zif3)
(3 tz 51 xX; R(tz) { Zzen(fi) exp(z¢f) }
1 9 1 4
2 8 0 )
3 6 1 7
4 10 1 3

Ex. 5.2 The calculation of partial likelihood: comparison of two groups

o Covariate z; indicating the group label

g ) ) g exp(zif3)
2 tz 51 Z; R(tZ) rer (i exp(zeB)
1 4 0 0
2 7 1 0
3 8 0 0
4 9 1 0



7 exp(zif)
1 trL 51 Z; R(tl) reriin CXp(Izﬁ)
5 10 0 0
6 3 1 1
7 5 1 1
8 5 0 1
9 6 1 1
10 8 0 1
library(survival)

data = data.frame(
tte = c¢(4,7,8,9,10,3,5,5,6,8),
delta = ¢(0,1,0,1,0,1,1,0,1,0),
x = ¢(0,0,0,0,0,1,1,1,1,1)

)
fit = coxph(Surv(tte,delta)~x, data = data)
summary (fit)

o exp(f) is the hazard ratio of group = 1 against group = 0, fixing covariates other than (if any). It implies
that one jumps from group = 0 to group = 1 the hazard would be inflated by (exp(8) — 1) x 100%.

e Is there any difference between the survival of the two groups? There are at least four p-values. Which
one shall we refer to?

o What are meanings of other digits in the output?

o« What if there are more covariates?

Ex. 5.3. Leukemia data (with tied event/failure times)

survival: :leukemia

Partial likelihood (Cox’s modification)

o Assumptions

— K and only K distinct, ordered failure times, say t; < --- < tg

— dy, failures at time tj: there are d, individuals, say subject iy 1, ...,k q,, Who fail at ¢
e Accordingly

pL(B) = ﬁ Hie{ik,l,...,ik,%} eXp(Zj xijﬁj)
iy 22D cr () Liepiay) P25 i)
— D(di) C R(tr): a subset of R(t) containing dj, subjects, i.e., a set of dj, individuals who are at
risk at g
o Labeled as exact by survival::coxph

Partial likelihood (Breslow’s approximation)
e Keeping the assumptions for the Cox’s modification

* Substituting {>_,cr ) exp(D°F_ x4 8;) 4 for the denominator of the Cox’s modification
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e Default tie-handling method in SAS



Partial likelihood (Efron’s approximation)
e Keeping the assumptions for the Cox’s modification
. dx m— .
o Substitute [[,; 1 {> rcr () exp(Z];:l xeif5) — Tl Zie{ik,lauwik,dk} exp(_; z;B;)} for the denomina-
tor of Cox’s modification

K

L(B) H Hie{ikah“':ik,dk} exp(zj zi;5;)
p = . o
k=1 an:l{ZZER(tk) eXp(Z§=1 zejB5) — Wl Zie{ik,l,...,iwk} exp(zj zi;8;)}

e Default tie-handling method by survival: :coxph

Summary of handling ties
o With no ties, all approximation options give exactly the same results
e With only a few ties, all approximations yield pretty much the same results

o With many ties (relative to the number at risk), both of Breslow’s and Efron’s approximations yield
coefficients B that are biased toward 0.

e Computing time of Cox’s method is substantially longer than that of approximate methods. But it is
not a big issue with today’s hardwares.

e The Efron’s approximation almost always works better than the Breslow’s method, without consuming
more time.

Revisit Ex. 5.3. Leukemia data (with tied event/failure times)

library(survival)
data = survival::leukemia
fitl = coxph(Surv(time,status)~x, data = data)

fit2 = coxph(Surv(time,status)~x, data = data, ties = 'efron')
fit3 = coxph(Surv(time,status)~x, data = data, ties = 'breslow')
fit4 = coxph(Surv(time,status)~x, data = data, ties = 'exact')

c(coef (fitl), coef(fit2), coef(fit3), coef(fit4))

CIs and hypothesis tests for HRs

e Suppose the HR of interest is the one associated with the one-unit increase of the jth covairate, i.e.,

exp(f;)
. var{exp(ﬁj)} ~ exp(2 Aj)var(Bj) (delta method)
— Hence se(exp(j3;)) ~ exp(f5;)se(5;)
« 95% CI for exp(3;)

— exp(f;) £ ®1(.975) x se(exp(f;))
* ®1(.975) (=~ 1.96): the .975 quantile of N(0,1)
— exp(f; + ®1(.975) x se(3;)) (preferred; why?)

o Hypothesis test for Hy : exp(8;) =1 (i.e., §; = 0) vs. Hy : otherwise.

— Wald test statistic: ﬁj/se(ﬁj) ~ N(0,1) under Hy
+ Equivalent to checking whether exp(3; + ®~1(.975) x se(j3;)) covers 1

e LRT to compare two nested models



— Model 1 nested to Model 2

* Model 1: )\(t | Lily--- ,l‘ip> = Ao(t) exp(Z?zl l‘ijﬁj)

* Model 2: )\(t | Lily s Lipy Liqg+1s--- ,.’L‘i’p+q) = )\O(t) eXp(Z?:lll .’Eijﬁj)
— Hj : Model 1 is correct (i.e., Bp+1 = -+ = Bp+q = 0) vs. Hy : Model 2 is correct
— Test statistic: 2(ln LMode12 —In LModell) ~ X2 (q) under HO

Ex. 5.4. Nursing home data

e Variables:
— ID: Patient ID
— Istay: Length of stay of a resident (in days)
— age: Age of a resident
— trt: Nursing home assignment (1: receive treatment, 0: control)
— gender: Gender (1:male, O:female)
— marstat: Marital status (1: married, 0: not married)
— hlstat: Health status (2: second best, 5: worst)
— cens: Censoring indicator (1:censored, 0: discharged)

options(digits=4)

library(survival)

data = read.csv("NursingHome.csv")

data$event <- 1-data$cens

head(data)

data$trt = factor(data$trt) # not necessary because it s of two levels

data$gender = factor(data$gender) # not necessary because it is of two levels
data$marstat = factor(data$marstat) # not necessary because it is of two levels
data$hlstat = factor(data$hlstat) # necessary because it is of more than two levels

fitl <- coxph(Surv(lstay,event) ~ trt + age + gender + marstat + hlstat, data=data)
summary (fit1)

# Testing t1f trt is mecessary against the full model

fit2 <- coxph(Surv(lstay,event) ~ age + gender + marstat + hlstat, data=data)
anova(fitl, fit2)

summary (£it2)

# Testing ©1f trt, age and marstat are necessary against the full model
fit3 <- coxph(Surv(lstay,event) ~ gender + hlstat, data=data)
anova(fitl, fit3)

summary (£it3)

Baseline cummulative hazard and survival function

o Have to maximize the likelihood L(8, \¢) instead of the partial likelihood pL(f)
— Assuming the cumulative baseline hazard Ag(-) as piecewise constant between failure times, Breslow
(1972) proved that
x L(B, Ao) and pL(J) share the identical maximizer, say A, with respect to 3
* The maximizer of L(, \g) with respect to Ao, say No, satisfies that

dy,

Ao(t) = _
o(t) PIES PSR
it <t 24LER(ty) j=1TejPj

Ag(t): Breslow estimator of the baseline cumulative hazard rate, reducing to the NA
estimator (Lecture Note Part II) if all covariates are zeros



di: # of events at
R(tx): the risk set at tj

o Bri(t) = exp{—Ro(6)) " Zim 0B = Gy (1) P )
— So(t) = exp{—Ao(t)}: estimated baseline survival function

Ex. 5.4. Revisit the nursing home data

options(digits=4)

library(survival)

data.exb4 = read.csv("NursingHome.csv")

data.exb4$event <- l-data.exb54$cens

data.exb4$marstat = factor(data.exb4$marstat) # not necessary because it is of two levels
data.exb4$hlstat = factor(data.ex54$hlstat) # necessary because it is of more than two levels
fit.ex54 <- coxph(Surv(lstay,event) ~ marstat + hlstat, data=data.ex54)

## P.S. note the mandatory scaling of covariates in “survival::coxph’

# baseline hazard and baseline survival
baseline <- basehaz(fit.ex54, centered = FALSE)

names (baseline) [1] = 'cum.haz'
baseline$surv = exp(-baseline$cum.haz)
baseline

# Plot the survival function with given wvalues of covariates
newdata.ex54 <- data.frame(

marstat = factor(c(0,0,1,1)),

hlstat = factor(c(2,5,2,5))
)
newdata.exb4
cox.predicted.survival <- survfit(fit.ex54, newdata=newdata.ex54)
plot(

cox.predicted.survival, 1lty=1:4, col=1:4, lwd=2,

xlab="Survival Time", ylab="Estimated Survival Probability"

)
legend(
"topright",
c(
"Not married, health status second best",
"Not married, health status worst",
"Married, health status second best",
"Married, health status worst"
Do
1ty=1:4, col=1:4, lwd=2
)
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