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Types of residuals
• Cox-Snell residuals: assessing the overall fit of the final model

• Martingale residuals: determining the functional form of a covariate included in the model

• Deviance residuals: detecting outliers

• Schoenfeld residuals: checking the appropriateness of the PH assumption

Cox-Snell residuals
• Cox-Snell residuals: ri,CS = Λ̂Ti(T̃i)

– Λ̂Ti(·): estimated ΛTi(·) given by the Cox PH model
– (For uncensored subjects) ri,CS

iid
≈ exp(1)

– (For all subjects) Λ̂Hi,NA(t̃i) ≈ t̃i
∗ Hi = Λ̂Ti

(Ti)
· Note that ri,CS 6= Hi and instead ri,CS = min{Hi, Λ̂Ti

(Ci)}
∗ Λ̂Hi,NA(·): NA estimator of ΛHi(·) based on right-censored {(ri,CS,∆i) : i = 1, . . . , n}

• Cox-Snell residual plot
– (For uncensored subjects) compare ri,CS to exp(1) samples via Q-Q plot
– (For all subjects) plot Λ̂Hi,NA(t̃i) against t̃i
– Used to diagnose poor model fit
– No insight into how model assumptions are violated

• Theoretical notes
– Inverse cdf theorem: arbitrary r.v. X with cdf FX(x) = Pr(X ≤ x)⇒ FX(X) ∼ U(0, 1)
– It follows that Ti

independent∼ STi(·)⇒ STi(Ti)
iid∼ U(0, 1)⇒ ΛTi(Ti) = − lnSTi(Ti)

iid∼ exp(1)
– {(ri,CS,∆i) : i = 1, . . . , n} is a right-censored dataset

∗ ri,CS = min(Hi, Λ̂Ti(Ci))⇐ T̃i = min(Ti, Ci) and monotonically ascending Λ̂Ti(·)
· Hi = Λ̂Ti

(Ti) ≈ ΛTi
(Ti)⇒ Hi ≈ exp(1)⇒ ΛHi

(t̃i) ≈ t̃i

Ex. 6.1 [KM, Example 11.1]
• This multi-center acute leukemia study consists of 137 patients with acute myelocytic leukemia (AML)

or acute lymphoblastic leukemia (ALL) aged 7 to 52 from March 1, 1984 to June 30, 1989 at four
institutions.

• The disease-free survival time (t2) on study is defined as time (in days) to relapse or death

• d3 is the disease free survival indicator: 1 - Dead or Relapsed, 0 - Alive Disease Free.

• Focus on effects of the following 9 covariates on disease-free survival:
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– z1: Patient age in years.
– z2: Donor age in years.
– z3: Patient sex: 1 - Male, 0 - Female.
– z4: Doner sex: 1 - Male, 0 - Female.
– z5: Patient Cytomegalovirus (CMV) status: 1 - CMV positive, 0 - CMV negative.
– z6: Donor CMV status: 1 - CMV positive, 0 - CMV negative.
– z7: Waiting time to transplant in days.
– z8: French–American–British classification (FAB): 1 - FAB Grade 4 or 5 and AML, 0 - otherwise.
– z10: Methotrexate (MTX): used as a Graft-Versus-Host-Prophylactic 1 - Yes, 0 - No.

options(digits=4)
library(survival)
# model fitting
data.ex55 = read.csv("bmt.csv")
fit.ex55 <- coxph(Surv(t2,d3) ~ z1+z2+z3+z4+z5+z6+z7+z8+z10, data=data.ex55)

# Cox-Snell residual
r.cs = data.ex55$d3-residuals(fit.ex55, type='martingale') # Cox-Snell

# Cox-Snell residual plot
set.seed(2024)
exp.rnd = rexp(10000)
qqplot(

x = exp.rnd, y = r.cs[as.logical(data.ex55$d3)],
xlab = "Theoretical Quantiles", ylab = "Sample Quantiles"

)
qqline(r.cs[as.logical(data.ex55$d3)], distribution = qexp)
# Or
cum.haz.r.cs <- basehaz(coxph(Surv(r.cs, d3)~1, data=data.ex55), centered = FALSE)
plot(

x=cum.haz.r.cs[,2], y=cum.haz.r.cs[,1],
xlab='t', ylab='Cumulative hazard of r.cs'

)
abline(a=0,b=1,col='red')

Martingale residuals
• Martingale residuals: ri,M = ∆i − ri,CS

• To explore the proper functional form of the j0th covariate, say fj0(·)

1. Fit a Cox PH model without the jth covariate λTi(t) = λ0(t) exp{
∑
j 6=j0

fj(xij)βj}
– fj(·): known proper functional form of the jth covariate

2. Compute martingale residuals ri,M for the above model
3. Scatterplot of ri,M against xij0 with a fitted locally estimated scatterplot smoothing (loess) curve

– fj0(·) (approximately) proportional to the loess curve
4. Update the model by adding fj0(xij0) and check the scatterplot of updated ri,M against xij0 with

a fitted loess line
– No further transformation needed If the new loess curve lies at the x-axis

• Theoretical notes:

– loess: to predict f(x0) by an weighted average f̂(x0) =
∑n
i=1 wiyi, where wi relies on the distance

between xi and x0; a closer xi enjoys a higher wi.
– Why is the residual bearing such a name?

∗ Martingale: a stochastic process M(t) such that E{M(t)} = 0 and E{M(t) |M(s)} = M(s)
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for all s < t
∗ ri,M obtained by evaluating a martingale at t̃i

– Why would the martingale residuals reveal the correct functional forms of covariates?
∗ With ri,M obtained from the Cox PH model excluding the j0th covariate, E(ri,M) ≈

(nD/n){fj0(xij0)− constant} [KM, pp. 362]
· nD/n: the ratio of total number of events to total number of subjects

– Zero-sum of martingale residuals:
∑
i ri,M = 0

∗ Specific for Cox PH model with the Breslow estimator for the baseline cumulative hazard

∗ Proof:
∑
i ri,CS =

∑
i

∑
k:tk≤t̃i

dk exp(
∑

j
xij β̂j)∑

`∈R(tk)
exp(

∑
j
x`j β̂j)

=
∑
k

∑
i∈R(tk)

dk exp(
∑

j
xij β̂j)∑

`∈R(tk)
exp(

∑
j
x`j β̂j)

=∑
k dk =

∑
i δi

Revisit Ex. 6.1

options(digits=4)
library(survival)
# [DM, pp. 208] a function to add the smooth curve and confidence limits
smoothSEcurve <- function(yy, xx) {

# use after a call to "plot"
# fit a lowess curve and 95% confidence interval curve
# make list of x values
xx.list <- min(xx) + ((0:100)/100)*(max(xx) - min(xx))
# Then fit loess function through the points (xx, yy)
# at the listed values
yy.xx <- predict(loess(yy ~ xx, span = 1), se=T, newdata=data.frame(xx=xx.list))
lines(yy.xx$fit ~ xx.list, lwd=2)
lines(yy.xx$fit -
qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)
lines(yy.xx$fit +
qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)

}

# model fitting without z1
data.ex55 = read.csv("bmt.csv")
fit.ex55 <- coxph(Surv(t2,d3) ~ z2+z3+z4+z5+z6+z7+z8+z10, data=data.ex55, ties = 'exact')

# Martingale residual plot (for the model without z1) vs. z1
r.m = residuals(fit.ex55, type='martingale')
sum(r.m)
plot(

x=data.ex55$z1, y=r.m,
main = 'Martingale residuals \n (for the model without z1) \n versus z1')

smoothSEcurve(r.m, data.ex55$z1) # indicating a cubic function?

# model fitting with a cubic function of z1
fit.ex55.1 <- coxph(Surv(t2,d3) ~ z1+I(z1ˆ2)+I(z1ˆ3)+z2+z3+z4+z5+z6+z7+z8+z10, data=data.ex55)

# Martingale residual plot (for the model with a cubic function of z1) vs. z1
r.m.1 = residuals(fit.ex55.1, type='martingale')
plot(

x=data.ex55$z1, y=r.m.1,
main = 'Martingale residual \n (for the model with a cubic function of z1) \n versus z1')

smoothSEcurve(r.m.1, data.ex55$z1)
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Deviance residuals
• Outlier: an observation for which the outcome is not sufficiently well predicted by the fitted model

• Deviance residuals: ri,D = sign(ri,M )
√
−2{ri,M + δi ln(δi − ri,M )}

– Symmetrically distributed with expected value 0 (if the fitted model is correct); de-
skewed/transformed martingale residuals

∗ ri,D = 0⇔ ri,M = 0
∗ Inflating ri,D when ri,M is close to 1
∗ Shrinking large negative ri,M

– Analogous to the deviance in GLMs

• Detecting outliers: plotting ri,D against
∑p
j=1 xij β̂j (called linear predictors or risk scores)

– With moderate (or less) censoring, this plot should look like randomly-distributed noise without
discernible pattern

– Large absolute values of deviance residuals indicating observations that are poorly explained by
the model, potentially pointing to outliers or influential points

∗ 95% of absolute deviance residuals ≤ 2
∗ 99.7% of absolute deviance residuals ≤ 3

Revisit Ex. 6.1

options(digits=4)
library(survival)
# [DM, pp. 208] a function to add the smooth curve and confidence limits
smoothSEcurve <- function(yy, xx) {

# use after a call to "plot"
# fit a lowess curve and 95% confidence interval curve
# make list of x values
xx.list <- min(xx) + ((0:100)/100)*(max(xx) - min(xx))
# Then fit loess function through the points (xx, yy)
# at the listed values
yy.xx <- predict(loess(yy ~ xx, span = 1), se=T, newdata=data.frame(xx=xx.list))
lines(yy.xx$fit ~ xx.list, lwd=2)
lines(yy.xx$fit -
qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)
lines(yy.xx$fit +
qt(0.975, yy.xx$df)*yy.xx$se.fit ~ xx.list, lty=2)

}

# model fitting
fit.ex55.1 <- coxph(
Surv(t2,d3) ~ z1+I(z1ˆ2)+I(z1ˆ3)+z2+z3+z4+z5+z6+z7+z8+z10,
data=data.ex55,
x = T

)

# Two ways to calculate linear predictors
risk.score.1 = fit.ex55.1$x %*% coef(fit.ex55.1) # reliable
risk.score.2 = fit.ex55.1$linear.predictors # Unreliable due to the default centering
sum((risk.score.1-risk.score.2)ˆ2) # typically different

# Deviance residual plot vs. risk scores
r.d = residuals(fit.ex55.1, type='deviance')
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plot(
x=risk.score.1, y=r.d,
main = 'Deviance residuals \n versus risk scores')

smoothSEcurve(yy=r.d, xx=risk.score.1)
abline(a=2,b=0,col='red')
abline(a=-2,b=0,col='red')
abline(a=3,b=0,col='red')
abline(a=-3,b=0,col='red')

(1:nrow(data.ex55))[abs(r.d) > 2] # Potential outliers
sum(abs(r.d) > 2)/nrow(data.ex55) # percent of r.d over 2
sum(abs(r.d) > 3)/nrow(data.ex55) # percent of r.d over 3

Schoenfeld residuals
• Schoenfeld residuals: for UNCENSORED subject i and the jth covariate,

rij,S = xij − x̄·j

– x̄·j =
∑
k∈uncensored subjects wkjzkj with weights wkj =

exp(
∑p

j=1
xkjβj)∑

`∈R(t̃k)
exp(

∑p

j=1
x`jβj)

– [DM, Sec. 7.2.2] Schoenfeld residuals are components of the score function⇒
∑
i∈uncensored subjects rij,S =

0 for each j
• Scaled Schoenfeld residuals

r∗ij,S = d · rij,S · var(β̂j)

– d: total number of events
– If the hazard ratio is constant over time, then E(r∗ij,S) + βj is time-invariant

• Investigating the PH assumption
– Plotting rij,S versus the covariate xij for the j covariate

∗ Points centered at zero if the PH assumption holds
∗ Inconvenient to be implemented in R

– Instead, checking the plot of r∗ij,S + β̂j vs. t
∗ Points without a time tendency if the PH assumption holds

– Score test (survival::cox.zph)

Revisit Ex. 6.1

options(digits=4)
library(survival)

# model fitting
fit.ex55.1 <- coxph(

Surv(t2,d3) ~ z1+I(z1ˆ2)+I(z1ˆ3)+z2+z3+z4+z5+z6+z7+z8+z10,
data=data.ex55,
x=T

)

# (unscaled) Schoenfeld residuals
r.s.unscaled = residuals(fit.ex55.1, type='schoenfeld')

# (scaled) Schoenfeld residual plot
plot(cox.zph(fit.ex55.1, transform="identity", terms=F, global=F))
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# Score test
cox.zph(fit.ex55.1, transform="identity", terms=F, global=F)
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