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Competing risks
• K (≥ 2) (mutually exclusive) events of interest

– Occurrence of one of these events precluding us from observing the other event on this subject
– Observation for each subject terminated if

∗ encountering one (and only one) of these K events or
∗ censoring

– E.g., death from different causes: natural causes, accidental death, homicide, suicide, etc.
– E.g., disease-free survival from multiple conditions: heart disease, cancer, chronic respiratory

diseases, stoke, diabetes, kidney diseases, etc.
• Notations

– i: subject index, i = 1, . . . , n
– T̃i = min(Ti, Ci): observed survival time for subject i

∗ Ti: authentic survival time for subject i
∗ Ci: censoring time for subject i

– ∆i: the (re-defined) event indicator for subject i
∗ ∆i = k, k = 1, . . . ,K: Ti = T̃i and the event label is k
∗ ∆i = 0: Ti = Ci

– xi1, . . . , xip: values of covariates for subject i

Recall functions characterizing the survival distribution
• Limited to continuous Ti
• Hazard function

λTi
(t) = lim

δ→0+

Pr(t ≤ Ti < t+ δ | Ti ≥ t)
δ

– The instantaneous risk of experiencing one event at time t, assuming the subject has survived up
to t

• Cumulative hazard function ΛTi
(t) =

∫ t
0 λTi

(u)du

• Survival function STi
(t) = Pr(Ti > t)

• (Cumulative) distribution function FTi(t) = Pr(Ti ≤ t) = 1− STi(t)

• Probability density function fTi(t) = dFTi(t)/dt

• Interaction among the above functions

– λTi
(t) = −d lnSTi

(t)/dt = −d ln{1− FTi
(t)}/dt

– ΛTi
(t) = − lnSTi

(t)
– STi

(t) = exp{−ΛTi
(t)} = exp{−

∫ t
0 λTi

(u)du}
– fTi

(t) = −dSTi
(t)/dt = STi

(t)λTi
(t)
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Motivation to consider the event type k

• May sacrifice valuable information by ignoring the event label (i.e., merging all the K events together)
– E.g., λTi

(t) = λ0(t) exp(
∑p
j=1 xijβj)

∗ β1 potentially insignificant in general with xi1 as a strong predictor for certain specific event

Cause-specific functions characterizing the survival distribution
• Cause-specific hazard function

λ
(k)
Ti

(t) = lim
δ→0+

Pr(t ≤ Ti < t+ δ,∆i = k | Ti ≥ t)
δ

, k = 1, . . . ,K

– The instantaneous risk of experiencing event k at time t, assuming the subject has survived up to t
–

∑K
k=1 λ

(k)
Ti

(t) = λTi
(t)

• Cumulative cause-specific hazard function Λ(k)
Ti

(t) =
∫ t

0 λ
(k)
Ti

(u)du
–

∑K
k=1 Λ(k)

Ti
(t) = ΛTi

(t)
• Sub-distribution function/cumulative incidence function (CIF) F (k)

Ti
(t) = Pr(Ti ≤ t,∆i = k)

– NOT a (cumulative) distribution function
– The probability of dying from event k up to time t, while acknowledging that the subject may die

of other K − 1 causes first
–

∑K
k=1 F

(k)
Ti

(t) = FTi
(t)⇒ STi

(t) = 1−
∑K
k=1 F

(k)
Ti

(t)
• Sub-distribution hazard function

λ̄
(k)
Ti

(t) = −
d ln{1− F (k)

Ti
(t)}

dt =
dF (k)

Ti
(t)/dt

1− F (k)
Ti

(t)
, k = 1, . . . ,K

– NOT the cause-specific hazard function
– λ̄

(k)
Ti

(t) ≤ λ(k)
Ti

(t)
• Interaction among the above functions

– λ
(k)
Ti

(t) =
dF (k)

Ti
(t)/dt

STi
(t)

∗ Proof: λ(k)
Ti

(t) = limδ→0+
Pr(t≤Ti<t+δ,∆i=k,Ti≥t)

δ Pr(Ti≥t) = limδ→0+
Pr(t≤Ti<t+δ,∆i=k)

δSTi
(t) =

dF (k)
Ti

(t)/dt
STi

(t)

– F
(k)
Ti

(t) =
∫ t

0 λ
(k)
Ti

(u)STi(u)du = 1− exp{−
∫ t

0 λ̄
(k)
Ti

(u)du}

Naive KM estimator [DM, Sec. 9.2.1]
• Assuming that

– Ti iid across i, i.e., Ti
iid∼ T

– Ti independent of Ci given covariates (if any)
– Times to different events are independent (typically violated in medical cases)

∗ Implying that at each time point the hazard of each event is the same for subjects at risk as
for subjects that have experienced other competing events by that time

• Estimation procedure
– Take the event k as the event of interest with other events considered as censored
– Apply KM estimator to the resulting binary setting and then estimate the probability of survival

from one event (in the absence of other causes) by
∏
j:tj≤t{1− λ̂

(k)
T (tj)}

∗ 0 = t0 < t1 < · · · < tJ : unique failure times
∗ λ̂

(k)
T (tj) = dkj/rj : an estimate of the cause-specific hazard function
· dkj : # of event k that happened exactly at time tj
· rj : # of individuals at risk up to time tj

• Underestimating the survival probability (i.e., overestimating the failure probability)
– Potentially treating subjects that will never fail as if they could fail
– The bias inflated when the competition when the hazards of competing events are larger
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Ex. 9.1 High risk population in asaur::prostateSurvival

• Dataset asaur::prostateSurvival involves covariates as below.
– grade: a factor with levels mode (moderately differentiated) and poor (poorly differentiated)
– stage: a factor with levels T1ab (Stage T1, clinically diagnosed), T1c (Stage T1, diagnosed via a

PSA test), and T2 (Stage T2)
– ageGroup: a factor with levels 66-69, 70-74, 75-79, & 80+
– survTime: the survival time from diagnosis to death (from prostate cancer or other causes) or last

date known alive
– status: a censoring variable, 0 (censored), 1 (death from prostate cancer), and 2 (death from

other causes)
• Consider the high risk population (i.e.,grade="poor", stage="T2" & ageGroup="80+").

options(digits=4)
library(asaur)
library(survival)
sapply(asaur::prostateSurvival, class)
data.ex91 = asaur::prostateSurvival[

asaur::prostateSurvival$grade == "poor" &
asaur::prostateSurvival$stage == "T2" &
asaur::prostateSurvival$ageGroup == "80+"
,

]
km.prost.naive = survfit(

Surv(survTime, event=(data.ex91$status==1)) ~ 1,
data=data.ex91

)
km.other.naive = survfit(

Surv(survTime, event=(data.ex91$status==2)) ~ 1,
data=data.ex91

)
plot(

km.prost.naive$surv ~ km.prost.naive$time, type="s", ylim=c(0,1), lwd=2, col="blue",
xlab="Months from prostate cancer diagnosis",
ylab='Estimated survival probability',

)
lines(km.other.naive$surv ~ km.other.naive$time, type="s", col="green", lwd=2)
legend(

"topright",
c(

"Prostate",
"Other"

),
col=c('blue','green'), lwd=2

)

KM estimator of CIF [DM, Sec. 9.2.2]
• Assuming that

– Ti iid across i, i.e., Ti
iid∼ T

– Ti independent of Ci given covariates (if any)
• Estimation procedure

– Estimate overall survival ST (t) by ŜT,KM (t) =
∏
j:tj≤t{1−

∑K
k=1 λ̂

(k)
T (tj)}

∗ 0 = t0 < t1 < · · · < tJ : unique failure times
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∗ λ̂
(k)
T (tj) = dkj/rj : an estimate of the cause-specific hazard function
· dkj : # of event k that happened exactly at time tj
· rj : # of individuals at risk up to time tj

– Estimate CIF F
(k)
T (t) by F̂ (k)

T,KM (t) =
∑
j:tj≤t λ̂

(k)
T (tj)ŜT,KM (tj − 1)

Revisit Ex. 9.1

options(digits=4)
library(asaur)
library(survival)
library(mstate)
sapply(asaur::prostateSurvival, class)
data.ex91 = asaur::prostateSurvival[

asaur::prostateSurvival$grade == "poor" &
asaur::prostateSurvival$stage == "T2" &
asaur::prostateSurvival$ageGroup == "80+"
,

]
km.cif = Cuminc(

time = data.ex91$survTime,
status = data.ex91$status

)
km.cif

# Plot of CIFs and the overall survival function
plot(

km.cif$CI.1 ~ km.cif$time, type="s", ylim=c(0,1), lwd=2, col="blue",
xlab="Months from prostate cancer diagnosis",
ylab="Probability"

)
lines(km.cif$CI.2 ~ km.cif$time, type="s", lwd=2, col="green")
lines(km.cif$Surv ~ km.cif$time, type="s", lwd=2, col="red")
legend(

"topright",
c(

"CIF (prostate)",
"CIF (other)",
'Overall survival'

),
col=c('blue','green','red'), lwd=2

)

# Stacked plot
library(ggplot2)
cuminc_data = as.data.frame(km.cif[, c('time','Surv','CI.1','CI.2')])
cuminc_data = tidyr::pivot_longer(

cuminc_data, cols = -time, names_to = "Types", values_to = "estimate")
ggplot(data = cuminc_data, aes(x = as.numeric(time), y = estimate, fill = Types)) +

geom_area(alpha = 0.6) +
labs(x = "Months from prostate cancer diagnosis", y = "Probability") +
theme_minimal()
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Regression on cause-specific hazards
• Assuming that

– Ti independent across i given covariates
– The independent and non-informative censoring
– λ

(k)
Ti

(t) = λ
(k)
0 (t) exp(

∑p
j=1 xijβ

(k)
j )

∗ λ
(k)
0 (t): baseline cause-specific hazard of event k

∗ β
(k)
1 , . . . , β

(k)
p : covariate effects potentially varying from one event to another

• Procedure
– Specify one event of interest and fit a Cox PH model with the remaining K − 1 events treated as

censoring
– Repeat the above step and obtain K Cox PH models

• If assuming that λ(k)
Ti

(t) = λ
(k)
0 (t) exp(

∑p
j=1 xijβj), i.e., βj shared by all the K events

– First reshape the data frame in an alternative way (i.e., the long format)
∗ Long format: encoding the event label by K rows

– Then fit a Cox PH model stratified by event
• When λ̂(k)

Ti
(t) is ready

– ŜTi
= exp{−

∑K
k=1

∫ t
0 λ̂

(k)
Ti

(u)du}
– F̂

(k)
Ti

(t) =
∫ t

0 λ̂
(k)
Ti

(u)ŜTi
(u)du

∗ Inconvenient to interpret the contribution of β̂(k)
j due to the nested non-linear structure

Ex. 9.2 Patients at “T2”-stage in asaur::prostateSurvival

• Consider patients with stage="T2".
options(digits=4)
library(asaur)
library(survival)
sapply(asaur::prostateSurvival, class)
data.ex92 = asaur::prostateSurvival[

asaur::prostateSurvival$stage == "T2"
,

]

# Regression on cause-specific hazards
cph.prost = coxph(

Surv(survTime, status==1)~grade + ageGroup,
data = data.ex91

)
summary(cph.prost)
cph.other = coxph(

Surv(survTime, status==2)~grade + ageGroup,
data = data.ex91

)
summary(cph.other)

# Regression on cause-specific hazards with shared coefficients
## Reshape the data into the long format
data.ex92.long = NULL
K = length(unique(data.ex92$status))-1
for (i in 1:nrow(data.ex92)){

data.curr = data.ex92[rep(i, times=K),]
data.curr$event = c('prostate', 'other')

5



data.curr$status=rep(0,K-1)
if(data.ex92$status[i]>=1) {

data.curr$status[which(data.curr$event==c('prostate', 'other')[data.ex92$status[i]])]=1
}
data.ex92.long = rbind(data.ex92.long, data.curr)

}
head(data.ex92)
head(data.ex92.long)
## Cox PH model stratified by event
cph.strat = coxph(

Surv(survTime, status)~grade + ageGroup+strata(event),
data = data.ex92.long

)
summary(cph.strat)

Fine-Gray sub-distribution hazards model
• Assuming that

– Ti independent across i given covariates
– The independent and non-informative censoring
– λ̄

(k)
Ti

(t) = λ̄
(k)
0 (t) exp(

∑p
j=1 xijβ

(k)
j )

∗ λ̄
(k)
0 (t): baseline sub-distribution hazard of event k

∗ β
(k)
1 , . . . , β

(k)
p : covariate effects potentially varying from one event to another

• When ˆ̄λ(k)
Ti

(t) is ready
– F̂

(k)
Ti

(t) = 1− exp{−
∫ t

0
ˆ̄λ(k)
Ti

(u)du}

Revisit Ex. 9.2
• Poorly differentiated patients (grade=poor) have higher risk for death from both prostate and other.

• Elder patients also have higher risk for the death from both conditions.
options(digits=4)
library(asaur)
data.ex92 = asaur::prostateSurvival[

asaur::prostateSurvival$stage == "T2"
,

]
cph.subdisthz.prost = cmprsk::crr(

ftime = data.ex92$survTime,
fstatus = data.ex92$status,
cov1 = model.matrix(~ grade + ageGroup, data = data.ex92)[,-1],
failcode=1

)
summary(cph.subdisthz.prost)
cph.subdisthz.other = cmprsk::crr(

ftime = data.ex92$survTime,
fstatus = data.ex92$status,
cov1 = model.matrix(~ grade + ageGroup, data = data.ex92)[,-1],
failcode=2

)
summary(cph.subdisthz.other)
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