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A motivating real-world study: gastric cancer clinical trial
We begin with data from a Phase II clinical trial evaluating XELOX chemotherapy given before surgery to
patients with advanced gastric cancer and paraaortic lymph node metastasis (Wang et al., 2014).

The primary outcome is progression-free survival, defined as the time from study entry to disease
progression or death, whichever occurs first. As is common in clinical trials, not all patients experienced
progression during follow-up, resulting in right-censored observations.

The dataset contains follow-up times and the event indicator.
head(asaur::gastricXelox)

## timeWeeks delta
## 1 4 1
## 2 8 1
## 3 8 1
## 4 8 1
## 5 9 1
## 6 11 1

From this study, researchers and clinicians naturally ask questions such as:

• What proportion of patients survive beyond a given time since the study entry?
• How does survival change over time in the presence of censoring?

Notations
• i : subject index, i = 1, . . . , n
• Ti : (authentic) survival time for subject i
• Ci : censoring time for subject i
• T̃i = min(Ti, Ci): observed survival time for subject i

• ∆i: event indicator for subject i; = 1 if T̃i = Ti; = 0 if T̃i = Ci

Assumptions
• Ti is iid across i, i.e., Ti ∼ T for all i
• Ti is independent of Ci

Kaplan-Meier (KM) estimator
• To estimate ST (t) (= STi

(t) for all i) using no covariates
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• Observed distinct authentic survival times: t1 < t2 < · · · < tnD

– nD: # of distinct time points at which events are observed

• Recall for discrete survival time

– ST (t) =
∏

j:tj≤t{1 − λT (tj)}

• KM estimator

– ŜT,KM (t) =
∏

j:tj≤t{1 − λ̂T (tj)}
∗ λ̂T (tj) = dj/rj : an estimate of the (conditional) probability for an individual who survives up

to time tj experiences the event at ti, i.e., Pr(event occurs in [tj , tj+1) | T ≥ tj)
· dj : # of events that happened exactly at time tj

· rj : # of individuals at risk up to time tj (have not yet had an event or been censored
prior to tj)

• Ex. 2.1: Find the KM estimator for the data below, where the + sign denotes a right-censored subject:

i 1 2 3 4 5 6 7 8 9 10

T̃i 2 5+ 8 12+ 15 21+ 25 29 30+ 34

• Risk table

j tj rj dj dj/rj ŜKM (tj)
– 0 10 0 0 1
1 2 10 1 .1 1 × (1 − .1) = .9
2 8 8 1 .125 .9 × (1 − .125) = .787
3 15 6 1 .167 .787 × (1 − .167) = .656
4 25 4 1 .25 .656 × (1 − .25) = .492
5 29 3 1 .33 .492 × (1 − .33) = .328
6 34 1 1 1 0

ex21 = data.frame(
time=c(2, 5, 8, 12, 15, 21, 25, 29, 30, 34),
delta=c(1, 0, 1, 0, 1, 0, 1, 1, 0, 1)

)
km.ex21 = survival::survfit(

formula=survival::Surv(time, delta)~1,
data=ex21,
conf.type="log-log")

summary(km.ex21)

• Variance of KM estimator
– var(dj/rj) ≈ dj/{rj(rj − dj)} (since dj/rj is the mle of λT (tj) ⇒ dj/rj ≈ N(λT (tj), λT (tj){1 −

λT (tj)}/rj))
– var{ln ŜT,KM (t)} ≈

∑
j:tj≤t dj/{rj(rj − dj)} (the delta method)

– var{ŜT,KM (t)} ≈ {ŜT,KM (t)}2 ∑
j:tj≤t dj/{rj(rj − dj)} (applying the delta method twice)

– var[ln{− ln ŜT,KM (t)}] ≈ {ŜT,KM (t)}−2 ∑
j:tj≤t dj/{rj(rj −dj)} (applying the delta method twice)

∗ leading to the confidence interval of ŜT,KM (t) based on the log-log transformation which is
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guaranteed to be inside [0, 1]

• Visualization of KM estimator
# A plain way
plot(km.ex21)
# A more fancy way
survminer::ggsurvplot(

km.ex21,
xlab="Time",
xlim=c(0,40),
conf.int = T,
conf.int.style="step",
censor=T,
legend.labs = c("Entire Cohort"),
risk.table = F,
cumevents = F,
tables.height = 0.15

)

• Properties of KM estimator
– ŜT,KM (t) is a right-continuous step function, approximating the (likely smooth) ST (t)
– ŜT,KM (t) is a consistent (but typically biased) estimator of ST (t)

∗ As n increases, ŜT,KM (t) becomes less jagged
∗ The bias vanishes when there is no censoring, stemming from the possibility that the last

survivor becomes censored.
– In the absence of censoring, ŜT,KM (t) reduces to 1 − F̂T (t)

∗ F̂T (t) = #{i : Ti ≤ t}/n is the empirical cumulative distribution function (ECDF)
– Note that ŜT,KM (t) has nD jumps

∗ One jump at each distinct failure time
∗ There is no jump at the censored times! (why?)

– ŜT,KM (t) is well-defined (it can be specified) up to the last observed time max{T̃1, . . . , T̃n}
∗ One cannot estimate ST (t) for times max{T̃1, . . . , T̃n} using the KM procedure
∗ Because no data available in the sample beyond time max{T̃1, . . . , T̃n}

– If last survivor is censored, KM estimator will NOT drop down to 0

• Ex. 2.2: Visualization of two KM estimators
– This dataset is from the Mayo Clinic trial in the primary biliary cirrhosis (PBC) conducted between

1974 and 1984. A total of 424 PBC patients met eligibility criteria for the randomized placebo
controlled trial of the drug D-penicillamine.

head(survival::pbc[,1:4])
# Cleaning
data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
head(data.ex22)
# Fitting
km.ex22 = survival::survfit(

formula=survival::Surv(time,status)~trt, data=data.ex22, conf.type="log-log"
)
print(km.ex22)
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summary(km.ex22)
# Plotting
plot(km.ex22)
survminer::ggsurvplot(

km.ex22,
xlab="Time",
conf.int = T,
conf.int.style="step",
censor = F,
risk.table = F,
cumevents = F,
tables.height = 0.15

)

Nelson-Aalen(-Altschuler-Fleming-Harrington) estimator
• Estimating the cumulative hazard

– Recall for discrete times, ΛT (t) =
∑

j:tj≤t λT (t)
– Λ̂T,NA(t) =

∑
j:tj≤t λ̂T (tj) =

∑
j:tj≤t dj/rj

• Estimating the survival function
– Recall for continuous times, ST (t) = exp{−ΛT (t)}
– ŜT,NA(t) = exp{−Λ̂T,NA(t)} = exp{−

∑
j:tj≤t dj/nj}

• Asymptotically equivalent to KM
– KM and NA give the same estimator as n → ∞

• Revisit Ex. 2.1: Find the NA estimator for the data below, where the + sign denotes a right-censored
subject:

i 1 2 3 4 5 6 7 8 9 10

T̃i 2 5+ 8 12+ 15 21+ 25 29 30+ 34

ex21 = data.frame(
time=c(2, 5, 8, 12, 15, 21, 25, 29, 30, 34),
delta=c(1, 0, 1, 0, 1, 0, 1, 1, 0, 1)

)
na.ex21 = survival::survfit(

formula=survival::Surv(time, delta)~1,
data=ex21,
conf.type="log-log",
type = 'fh')

summary(na.ex21)
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